933 resultados para subacute toxicity
Resumo:
A solution culture experiment was conducted to examine the effect of Cu toxicity on Rhodes grass (Chloris gayana Knuth.), a pasture species used in mine-site rehabilitation. The experiment used dilute, solution culture to achieve external nutrient concentrations, which were representative of the soil solution, and an ion exchange resin to maintain stable concentrations of Cu in solution. Copper toxicity was damaging to plant roots, with symptoms ranging from disruption of the root cuticle and reduced root hair proliferation, to severe deformation of root structure. A reduction in root growth was observed at an external Cu concentration of < 1 mu M, with damage evident from an external concentration of 0.2 mu M. Critical to the success of this experiment, in quantitatively examining the relationship between external Cu concentration and plant response, was the use of ion exchange resin to buffer the concentration of Cu in solution. After some initial difficulty with pH control, stable concentrations of Cu in solution were maintained for the major period of plant growth. The development of this technique will facilitate future investigations of the effect of heavy metals on plants.
Resumo:
Alzheimer's disease is characterized by the over-production and accumulation of amyloidogenic A beta peptide, which can induce cell death in vitro. It has been suggested that the death signal could be transduced by the pan neurotrophin receptor (p75NTR). p75NTR is well known for its ability to mediate neuronal death in neurodegenerative conditions and is inextricably linked with changes that occur in Alzheimer's disease. Moreover, A beta binds to p75NTR, activating signalling cascades. However, the complexity of p75NTR-mediated signalling, which does not always promote cell death, leaves open the possibly of A beta promoting death via an alternative signalling pathway or the regulation of other p75NTR-mediated actions. This review focuses on the interactions between A beta and p75NTR in the context of the broader p75NTR signalling field, and offers alternative explanations for how p75NTR might contribute to the aetiology of Alzheimer's disease.
Resumo:
The aim of the present study was to compare cryopreservation, osmotic tolerance and glycerol toxicity between mature and immature epididymal kangaroo spermatozoa to investigate whether the lack of cryopreservation success of cauda epididymidal spermatozoa may be related to the increased complexity of the sperm ultrastructure acquired during epididymal transit. Caput and cauda epididymidal spermatozoa were recovered from red-necked wallabies (RNW; Macropus rufogriseus) and eastern grey kangaroos (EGK; M. giganteus). In Experiment 1, caput and cauda epididymidal spermatozoa were frozen and thawed using a standard cryopreservation procedure in Triscitrate buffer with or without 20% glycerol. Although cryopreservation of caput epididymidal spermatozoa resulted in a significant increase in sperm plasma membrane damage, they were more tolerant of the procedure than spermatozoa recovered from the cauda epididymidis (P< 0.05). In Experiment 2, caput and cauda epididymidal EGK spermatozoa were diluted into phosphate-buffered saline media of varying osmolarity and their osmotic tolerance determined. Plasma membranes of caput epididymidal spermatozoa were more tolerant of hypo-osmotic media than were cauda epididymidal spermatozoa ( P< 0.05). In Experiment 3, caput and cauda epididymidal RNW spermatozoa were incubated in Tris-citrate buffer with and without 20% glycerol at 35 and 4 degrees C to examine the cytotoxic effects of glycerol. At both temperatures, caput epididymidal spermatozoa showed less plasma membrane damage compared with cauda epididymidal spermatozoa when exposed to 20% glycerol ( P< 0.05). These experiments clearly indicate that epididymal maturation of kangaroo spermatozoa results in a decreased ability to withstand the physiological stresses associated with cryopreservation.
Resumo:
A solution culture experiment was conducted to examine the effect of Cu toxicity on Rhodes grass (Chloris gayana), a pasture species used in mine site rehabilitation. The experiment used dilute, solution culture to achieve external nutrient concentrations which were representative of the soil solution, and ion exchange resins to maintain stable concentrations of Cu in solution. Copper toxicity was damaged plant roots, with symptoms ranging from disruption of the root cuticle and reduced root hair proliferation, to severe deformation of root structure. A reduction in root growth was observed at an external Cu concentration of