999 resultados para strong distributions
Resumo:
Western rock lobsters, Panulirus cygnus are an abundant benthic consumer distributed along the temperate west coast of Australia and constitute the largest single species fishery in Australia. As a dominant consumer, it is important to understand their predator-prey interactions as they can potentially exert strong trophic effects, and may influence ecosystem function as seen in other spiny lobster species. While previous field studies have focused on the diet composition of P. cygnus, this study investigated their preference for various benthic invertebrate prey to better understand the likely predator-prey interactions of P. cygnus. Prey preferences of small sub-legal juvenile lobsters, as well as medium and large legal-sized mature lobsters were investigated using laboratory feeding trials to identify size-associated differences in lobster prey preference. Handling time and diet quality were investigated to estimate energetic cost and gain from consuming different prey which may explain prey choice by lobsters. It was found that large lobsters preferred crabs and mussels while medium and small lobsters preferred crabs over mussels, gastropods, and sea urchins. This suggests that strong predator-prey interactions between P. cygnus and crabs may occur in the wild.
Resumo:
Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (similar to 50 %) and their calcification can affect the atmosphere-to-ocean (air-sea) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO(2)). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998-2007), using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 +/- 104 000 km(2), which results in a net CaCO3 carbon (CaCO3-C) production of 0.14-1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production) can fluctuate inter-annually by -54/+81% about the mean value and is strongly correlated with the El Nino/Southern Oscillation (ENSO) climate oscillation index (r = 0.75, p < 0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO(2) and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155 %. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO(2) should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3-28 %.
Resumo:
The Continuous Plankton Recorder has been deployed in the NE Pacific on two intersecting transects since 2000. Many deployments included a temperature sensor providing in situ temperature data to supplement the species abundance data for 1300 samples. Twenty-nine copepod taxa were sufficiently abundant to examine their temperature-related distributions. Groups of warm- and cold-water species were identified, with overlapping distributions between 48 and 588N. Recent fluctuations in ocean climate, from the warmest year on record in 2005 to one of the coldest in decades in 2008, provided ideal conditions to observe temperature-related interannual variability. The abundance and northwards extension of warm water species were significantly positively correlated with mean annual temperature and the Pacific Decadal Oscillation. The cold water species showed no correlations with temperature/Pacific Decadal Oscillation (PDO) within the study region; however, if the 4 years of sampling that extended south to 398N were examined separately, there was a strong relationship between temperature/PDO and the southern extent of subarctic copepods. Under warm ocean conditions, the range overlap of the two groups will increase as warm water species extend northwards, causing an increase in copepod diversity. Since warm water species are generally smaller and nutritionally poorer, this has implications for higher trophic levels
Resumo:
The Continuous Plankton Recorder has been deployed on a seasonal basis in the north Pacific since 2000, accumulating a database of abundance measurements for over 290 planktonic taxa in over 3,500 processed samples. There is an additional archive of over 10,000 samples available for further analyses. Exxon Valdez Oil Spill Trustee Council financial support has contributed to about half of this tally, through four projects funded since 2002. Time series of zooplankton variables for sub-regions of the survey area are presented together with abstracts of eight papers published using data from these projects. The time series covers a period when the dominant climate signal in the north Pacific, the Pacific Decadal Oscillation (PDO), switched with unusual frequency between warm/positive states (pre-1999 and 2003-2006) and cool/negative states (1999-2002 and 2007). The CPR data suggest that cool negative years show higher biomass on the shelf and lower biomass in the open ocean, while the reverse is true in warm (PDO positive) years with lower shelf biomass (except 2005) and higher oceanic biomass. In addition, there was a delay in plankton increase on the Alaskan shelf in the colder spring of 2007, compared to the warmer springs of the preceding years. In warm years, smaller species of copepods which lack lipid reserves are also more common. Availability of the zooplankton prey to higher trophic levels (including those that society values highly) is therefore dependent on the timing of increase and peak abundance, ease of capture and nutritional value. Previously published studies using these data highlight the wide-ranging applicability of CPR data and include collaborative studies on; phenology in the key copepod species Neocalanus plumchrus, descriptions of distributions of decapod larvae and euphausiid species, the effects of hydrographic features such as mesoscale eddies and the North Pacific Current on plankton populations and a molecularbased investigation of macro-scale population structure in N. cristatus. The future funding situation is uncertain but the value of the data and studies so far accumulated is considerable and sets a strong foundation for further studies on plankton dynamics and interactions with higher trophic levels in the northern Gulf of Alaska.
Resumo:
In July 2004, dominant populations of microbial ultraplankton (<5 μm), in the surface of the Celtic Sea (between UK and Eire), were repeatedly mapped using flow cytometry, at 1.5 km resolution over a region of diameter 100 km. The numerically dominant representatives of all basic functional types were enumerated including one group of phototrophic bacteria (Syn), two groups of phytoplankton (PP, NP), three groups of heterotrophic bacterioplankton (HB) and the regionally dominant group of heterotrophic protists (HP). The distributions of all organisms showed strong spatial variability with little relation to variability in physical fields such as salinity and temperature. Furthermore, there was little agreement between distributions of different organisms. The only linear correlation consistently explaining more than 50% of the variance between any pairing of the organism groups enumerated is between two different groups of HB. Specifically, no linear, or non-linear, relationship is found between any pairings of SYB, PP or HB groups with their protist predators HP. Looking for multiple dependencies, factor analysis reveals three groupings: Syn, PP and low nucleic acid content HB (LNA); high nucleic acid content HB (HNA); HP and NP. Even the manner in which the spatial variability of Syn, PP and HB abundance varies as a function of lengthscale (represented by a semivariogram) differs significantly from that for HP. In summary, although all microbial planktonic groups enumerated are present and numerically dominant throughout the region studied, at face value the relationships between them seem weak. Nevertheless, the behaviour of a simple, illustrative ecological model, with strongly interacting phototrophs and heterotrophs, with stochastic forcing, is shown to be consistent with the observed poor correlations and differences in how spatial variability varies with lengthscale. Thus, our study suggests that a comparison of microbial abundances alone may not discern strong underlying trophic interactions. Specific knowledge of these processes, in particular grazing, will be required to explain the causes of the observed microbial spatial variability and its resulting consequences for the functioning of the ecosystem.
Resumo:
Latitudinal gradients in diversity are among the most striking features in ecology. For terrestrial species, climate (i.e. temperature and precipitation) is believed to exert a strong influence on the geographical distributions of diversity through its effects on energy availability. Here, we provide the first global description of geographical variation in the diversity of marine copepods, a key trophic link between phytoplankton and fish, in relation to environmental variables. We found a polar-tropical difference in copepod diversity in the Northern Hemisphere where diversity peaked at subtropical latitudes. In the Southern Hemisphere, diversity showed a tropical plateau into the temperate regions. This asymmetry around the Equator may be explained by climatic conditions, in particular the influence of the Inter-Tropical Convergence Zone, prevailing mainly in the northern tropical region. Ocean temperature was the most important explanatory factor among all environmental variables tested, accounting for 54 per cent of the variation in diversity. Given the strong positive correlation between diversity and temperature, local copepod diversity, especially in extra-tropical regions, is likely to increase with climate change as their large-scale distributions respond to climate warming.
Resumo:
Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean 5 carbonate pump (�50%) and their formation can affect the atmosphere-to-ocean (airsea) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO2). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998–2007), using Earth observation data from the Sea-viewing Wide 10 Field of view Sensor (SeaWiFS).We calculate the annual mean surface areal coverage of E. huxleyi in the North Atlantic to be 474 000±119 000km2 yr−1, which results in a net CaCO3 production of 0.62±0.15 Tg CaCO3 carbon per year. However, this surface coverage and net production can fluctuate by −54/+81% about these mean values and are strongly correlated with the El Ni˜no/Southern Oscillation (ENSO) climate os15 cillation index (r =0.75, p<0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO2 and thus decrease the localised sink of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly CO2 sink can reach 12 %. The maximum reduction of the monthly CO2 sink in the time series is 32 %. This work suggests that the high 20 variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered within modelling studies of the North Atlantic if we are to fully understand the variability of its air-to-sea CO2 flux.
Resumo:
We present an extensive dataset of dimethylsulphide (DMS, n = 651) and dimethylsulphoniopropionate (DMSP, n = 590) from the Atlantic Meridional Transect programme. These data are used to derive representative depth profiles that illustrate observed natural variations and can be used for DMS and DMSP model-validation in oligotrophic waters. To further understand our dataset, we interpret the data with a wide range of accompanying parameters that characterise the prevailing biogeochemical conditions and phytoplankton community physiology, activity, taxonomic composition, and capacity to cope with light stress. No correlations were observed with typical biomarker pigments for DMSP-producing species. However, strong correlations were found between DMSP and primary production by cells >2 µm in diameter, and between DMSP and some photo-protective pigments. These parameters are measures of mixed phytoplankton communities, so we infer that such associations are likely to be stronger in DMSP-producing organisms. Further work is warranted to develop links between community parameters, DMS and DMSP at the global scale.
Resumo:
The TetraEther indeX of 86 carbon atoms (TEX86) temperature proxy is widely used in reconstructions of past sea surface temperature. Most current calibrations are based on surface sediment distributions of the glycerol dialkyl glycerol tetraether lipids (GDGTs) that comprise TEX86 and assume that these GDGTs are exported from the upper mixed layer. However, GDGT export from deeper waters could impact sedimentary GDGT distributions and therefore TEX86 paleothermometry. Here we examine GDGT distributions in suspended particulate matter (SPM) and underlying sediments collected from the Southeast Atlantic Ocean. Our results reveal different GDGT distributions - specifically the ratio between GDGTs bearing 2 vs. 3 cyclopentyl moieties, [2/3] ratios - between surface, subsurface (>50-200 m) and deep water (>200 m) SPM, which suggests the occurrence of in situ (deep) production that is not apparent when considering TEX86. The GDGT distributions in sediments match those of subsurface waters rather than surface waters, suggesting that they have not been preferentially derived from the upper mixed layer; this is consistent with GDGT abundances being highest in shallow subsurface SPM (˜100 to 200 m). It remains unclear what governs the different [2/3] ratios throughout the water column, but it is likely related to a combination of temperature and thaumarchaeotal community structure.
Resumo:
Volcanic eruptions have been hypothesized as an iron supply mechanism for phytoplankton blooms; however, little direct evidence of stimulatory responses has been obtained in the field. Here we present the results of twenty-one 1–2 day bottle enrichment experiments from cruises in the South Atlantic and Southern Ocean which conclusively demonstrated a photophysiological and biomass stimulation of phytoplankton communities following supply of basaltic or rhyolitic volcanic ash. Furthermore, experiments in the Southern Ocean demonstrated significant phytoplankton community responses to volcanic ash supply in the absence of responses to addition of dissolved iron alone. At these sites, dissolved manganese concentrations were among the lowest ever measured in seawater, and we therefore suggest that the enhanced response to ash may have been a result of the relief of manganese (co)limitation. Our results imply that volcanic ash deposition events could trigger extensive phytoplankton blooms, potentially capable of significant impacts on regional carbon cycling.
Resumo:
The biogeochemical cycle of zinc (Zn) in the South Atlantic, at 40°S, was investigated as part of the UK GEOTRACES program. To date there is little understanding of the supply of Zn, an essential requirement for phytoplankton growth, to this highly productive region. Vertical Zn profiles displayed nutrient-like distributions with distinct gradients associated with the watermasses present. Surface Zn concentrations are among the lowest reported for theworld’s oceans (<50 pM). A strong Zn-Si linear relationshipwas observed (Zn (nM)= 0.065 Si (μM), r2=0.97, n = 460). Our results suggest that the use of a global Zn-Si relationship would lead to an underestimation of dissolved Zn in deeper waters of the South Atlantic. By utilizing Si* and a new tracer Zn* our data indicate that the preferential removal of Zn in the Southern Ocean prevented a direct return path for dissolved Zn to the surface waters of the South Atlantic at 40°S and potentially the thermocline waters of the South Atlantic subtropical gyre. The importance of Zn for phytoplankton growth was evaluated using the Zn-soluble reactive phosphorus (SRP) relationship. We hypothesize that the low Zn concentrations in the South Atlantic may select for phytoplankton cells with a lower Zn requirement. In addition, a much deeper kink at ~ 500m in the Zn:SRP ratio was observed compared to other oceanic regions.
Resumo:
An optimal search theory, the so-called Levy-flight foraging hypothesis(1), predicts that predators should adopt search strategies known as Levy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey(2-4). Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Levy behaviour has recently been questioned(5,6). Consequently, whether foragers exhibit Levy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Levy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Levy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Levy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Levy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Levy-flight foraging hypothesis(1,7), supporting the contention(8,9) that organism search strategies naturally evolved in such a way that they exploit optimal Levy patterns.