942 resultados para strategy formulation process
Resumo:
The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.
Resumo:
In this paper, a formulation for representation of stiffeners in plane stress by the boundary elements method (BEM) in linear analysis is presented. The strategy is to adopt approximations for the displacements in the central line of the stiffener. With this simplification the Spurious oscillations in the stress along stiffeners with small thickness is prevented. Worked examples are analyzed to show the efficiency of these techniques, especially in the insertion of very narrow sub-regions, in which quasi-singular integrals are calculated, with stiffeners that are much stiffer than the main domain. The results obtained with this formulation are very close to those obtained with other formulations. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a boundary element method (BEM) model that is used for the analysis of multiple random crack growth by considering linear elastic fracture mechanics problems and structures subjected to fatigue. The formulation presented in this paper is based on the dual boundary element method, in which singular and hyper-singular integral equations are used. This technique avoids singularities of the resulting algebraic system of equations, despite the fact that the collocation points coincide for the two opposite crack faces. In fracture mechanics analyses, the displacement correlation technique is applied to evaluate stress intensity factors. The maximum circumferential stress theory is used to evaluate the propagation angle and the effective stress intensity factor. The fatigue model uses Paris` law to predict structural life. Examples of simple and multi-fractured structures loaded until rupture are considered. These analyses demonstrate the robustness of the proposed model. In addition, the results indicate that this formulation is accurate and can model localisation and coalescence phenomena. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to present a methodology with superior efficiency for inactivating pathogenic indicators commonly found in domestic sewage. The adopted method was based on synergistic effect resulting from the introduction of a UV radiation pre-disinfection stage of sewage followed by secondary treatment. A pilot unit was installed in the sewage treatment plant of the University of Sao Paulo to simulate the combined system in full-scale operational conditions. Its performance was evaluated through microbiological examinations for determining Escherichia coli, total coliforms and coliphages. The application of UV radiation at 5.1mW/cm(2) for 10 s of exposure in the first disinfection stage was enough to reduce the surviving number of E. coli around 100 times, in comparison to the conventional method. Therefore, based on experimental data, it is possible to conclude that combining treatment and pre-disinfection stage is an effective potential technique to produce effluents with lower degree of contamination by pathogenic organisms.
Resumo:
The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).
Resumo:
The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 degrees C using different COD/[SO] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 degrees C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 degrees C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a technological viability study of wastewater treatment in an automobile industry by an anaerobic sequencing batch biofilm reactor containing immobilized biomass (AnSBBR) with a draft tube. The reactor was operated in 8-h cycles, with agitation of 400 rpm, at 30 degrees C and treating 2.0 L wastewater per cycle. Initially the efficiency and stability of the reactor were studied when supplied with nutrients and alkalinity. Removal efficiency of 88% was obtained at volumetric loading rate (VLR) of 3.09 mg COD/L day. When VLR was increased to 6.19 mg COD/L day the system presented stable operation with reduction in efficiency of 71%. In a second stage the AnSBBR was operated treating wastewater in natura, i.e., without nutrients supplementation, only with alkalinity, thereby changing feed strategy. The first strategy consisted in feeding 2.0 L batch wise (10 min), the second in feeding 1.0 L of influent batch wise (10 min) and an additional 1.0 L fed-batch wise (4 h), both dewatering 2.0 L of the effluent in 10 min. The third one maintained 1.0 L of treated effluent in the reactor, without discharging, and 1.0 L of influent was fed fed-batch wise (4 h) with dewatering 1.0 L of the effluent in 10 min. For all implemented strategies (VLR of 1.40, 2.57 and 2.61 mg COD/L day) the system presented stability and removal efficiency of approximately 80%. These results show that the AnSBBR presents operational flexibility, as the influent can be fed according to industry availability. In industrial processes this is a considerable advantage, as the influent may be prone to variations. Moreover, for all the investigated conditions the kinetic parameters were obtained from fitting a first-order model to the profiles of organic matter, total volatile acids and methane concentrations. Analysis of the kinetic parameters showed that the best strategy is feeding 1.0 L of influent batchwise (10 min) and 1.0 L fed-batch wise (4 h) in 8-h cycle. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Purpose - The purpose of this paper is to identify the key elements of a new rapid prototyping process, which involves layer-by-layer deposition of liquid-state material and at the same time using an ultraviolet line source to cure the deposited material. This paper reports studies about the behaviour of filaments, deposition accuracy, filaments interaction and functional feasibility of system. Additionally, the author describes the process which has been proposed, the equipment that has been used for these studies and the material which was developed in this application. Design/methodology/approach - The research has been separated into three study areas in accordance with their goals. In the first, both the behaviour of filament and deposition accuracy was studied. The design of the experiment is described with focus on four response factors (bead width, filament quality, deposition accuracy and deposition continuity) along with function of three control factors (deposition height, deposition velocity and extrusion velocity). The author also studied the interaction between filaments as a function of bead centre distance. In addition, two test samples were prepared to serve as a proof of the methodology and to verify the functional feasibility of the process which has been studied. Findings - The results show that the proposed process is functionally feasible, and that it is possible to identify the main effects of control factors over response factors. That analysis is used to predict the condition of process as a function of the parameters which control the process. Also identified were distances of centre beads which result in a specific behaviour. The types of interaction between filaments were analysed and sorted into: union, separation and indeterminate. At the end, the functional feasibility of process was proved whereby two test parts could be built. Originality/value - This paper proposes a new rapid prototyping process and also presents test studies related to this proposition. The author has focused on the filament behaviour, deposition accuracy, interaction between filaments and studied the functional feasibility of process to provide new information about this process, which at the same time is useful to the development of other rapid prototyping processes.
Resumo:
Recent studies have shown that partial oxidation by advanced oxidation processes (AOP) is able to transform hard-to-degrade compounds and increase their biodegradability. In this work, anaerobic treatment was followed by ozonation, UV radiation and ozonation in the presence of UV radiation, to treat bleaching effluents from a cellulose kraft Pulp plant. The anaerobic reactor (horizontal anaerobic immobilized Sludge bed, HAISB) was Used as a pretreatment to reduce the efficient organic load before applying ACIP. The ozone treatments were applied in three different pH environments (3, 8 and 10) with retention times of 10, 30, 45 and 60 min. COD and adsorbable organic halogens (AOX) removal efficiencies at the HAISB were approximately 50%, while the BOD removal efficiency reached 80%. Ozonation promoted further removal of AOX and COD so that the combined efficiency reached 96% for AOX and 70% for COD. In the oxidation process, BOD was either removed in small quantities or actually increased, as intended, so that a second biological treatment would be able to complete the treatment. The maximum increase in the BOD(5)/COD ratio (biodegradability indicator) Occurred at pH 8, reaching 104% for ozonation at a dosage of 1540 mg(O3).L(-1). Applying UV radiation alone resulted in lower values: a 34% increase ill the BOD(5)/COD ratio and a 76% AOX removal efficiency. These results indicate that the combination of anaerobic treatment with ozonation or ozonation/UV radiation improves the treatability of cellulose pulp bleaching efficients and that the resulting wastewater is suitable for further biological treatment under aerobic conditions with a low level of toxic compounds from the halogenated family.
Resumo:
In this paper, an extended impedance-based fault-location formulation for generalized distribution systems is presented. The majority of distribution feeders are characterized by having several laterals, nonsymmetrical lines, highly unbalanced operation, and time-varying loads. These characteristics compromise traditional fault-location methods performance. The proposed method uses only local voltages and currents as input data. The current load profile is obtained through these measurements. The formulation considers load variation effects and different fault types. Results are obtained from numerical simulations by using a real distribution system from the Electrical Energy Distribution State Company of Rio Grande do Sul (CEEE-D), Southern Brazil. Comparative results show the technique robustness with respect to fault type and traditional fault-location problems, such as fault distance, resistance, inception angle, and load variation. The formulation was implemented as embedded software and is currently used at CEEE-D`s distribution operation center.
Resumo:
The health sector requires continuous investments to ensure the improvement of products and services from a technological standpoint, the use of new materials, equipment and tools, and the application of process management methods. Methods associated with the process management approach, such as the development of reference models of business processes, can provide significant innovations in the health sector and respond to the current market trend for modern management in this sector (Gunderman et al. (2008) [4]). This article proposes a process model for diagnostic medical X-ray imaging, from which it derives a primary reference model and describes how this information leads to gains in quality and improvements. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The present paper proposes a flexible consensus scheme for group decision making, which allows one to obtain a consistent collective opinion, from information provided by each expert in terms of multigranular fuzzy estimates. It is based on a linguistic hierarchical model with multigranular sets of linguistic terms, and the choice of the most suitable set is a prerogative of each expert. From the human viewpoint, using such model is advantageous, since it permits each expert to utilize linguistic terms that reflect more adequately the level of uncertainty intrinsic to his evaluation. From the operational viewpoint, the advantage of using such model lies in the fact that it allows one to express the linguistic information in a unique domain, without losses of information, during the discussion process. The proposed consensus scheme supposes that the moderator can interfere in the discussion process in different ways. The intervention can be a request to any expert to update his opinion or can be the adjustment of the weight of each expert`s opinion. An optimal adjustment can be achieved through the execution of an optimization procedure that searches for the weights that maximize a corresponding soft consensus index. In order to demonstrate the usefulness of the presented consensus scheme, a technique for multicriteria analysis, based on fuzzy preference relation modeling, is utilized for solving a hypothetical enterprise strategy planning problem, generated with the use of the Balanced Scorecard methodology. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Ecological niche modelling combines species occurrence points with environmental raster layers in order to obtain models for describing the probabilistic distribution of species. The process to generate an ecological niche model is complex. It requires dealing with a large amount of data, use of different software packages for data conversion, for model generation and for different types of processing and analyses, among other functionalities. A software platform that integrates all requirements under a single and seamless interface would be very helpful for users. Furthermore, since biodiversity modelling is constantly evolving, new requirements are constantly being added in terms of functions, algorithms and data formats. This evolution must be accompanied by any software intended to be used in this area. In this scenario, a Service-Oriented Architecture (SOA) is an appropriate choice for designing such systems. According to SOA best practices and methodologies, the design of a reference business process must be performed prior to the architecture definition. The purpose is to understand the complexities of the process (business process in this context refers to the ecological niche modelling problem) and to design an architecture able to offer a comprehensive solution, called a reference architecture, that can be further detailed when implementing specific systems. This paper presents a reference business process for ecological niche modelling, as part of a major work focused on the definition of a reference architecture based on SOA concepts that will be used to evolve the openModeller software package for species modelling. The basic steps that are performed while developing a model are described, highlighting important aspects, based on the knowledge of modelling experts. In order to illustrate the steps defined for the process, an experiment was developed, modelling the distribution of Ouratea spectabilis (Mart.) Engl. (Ochnaceae) using openModeller. As a consequence of the knowledge gained with this work, many desirable improvements on the modelling software packages have been identified and are presented. Also, a discussion on the potential for large-scale experimentation in ecological niche modelling is provided, highlighting opportunities for research. The results obtained are very important for those involved in the development of modelling tools and systems, for requirement analysis and to provide insight on new features and trends for this category of systems. They can also be very helpful for beginners in modelling research, who can use the process and the experiment example as a guide to this complex activity. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper shows a new hybrid method for risk assessment regarding interruptions in sensitive processes due to faults in electric power distribution systems. This method determines indices related to long duration interruptions and short duration voltage variations (SDVV), such as voltage sags and swells in each customer supplied by the distribution network. Frequency of such occurrences and their impact on customer processes are determined for each bus and classified according to their corresponding magnitude and duration. The method is based on information regarding network configuration, system parameters and protective devices. It randomly generates a number of fault scenarios in order to assess risk areas regarding long duration interruptions and voltage sags and swells in an especially inventive way, including frequency of events according to their magnitude and duration. Based on sensitivity curves, the method determines frequency indices regarding disruption in customer processes that represent equipment malfunction and possible process interruptions due to voltage sags and swells. Such approach allows for the assessment of the annual costs associated with each one of the evaluated power quality indices.
Resumo:
This paper presents a new methodology to estimate harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The main advantage in using such a technique relies upon its modeling facilities as well as its potential to solve fairly complex problems. The problem-solving algorithm herein proposed makes use of data from various power-quality (PQ) meters, which can either be synchronized by high technology global positioning system devices or by using information from a fundamental frequency load flow. This second approach makes the overall PQ monitoring system much less costly. The algorithm is applied to an IEEE test network, for which sensitivity analysis is performed to determine how the parameters of the ES can be selected so that the algorithm performs in an effective way. Case studies show fairly promising results and the robustness of the proposed method.