955 resultados para stiffness tomography
Resumo:
A new approach, the four-window technique, was developed to measure optical phase-space-time-frequency tomography (OPSTFT). The four-window technique is based on balanced heterodyne detection with two local oscillator (LO) fields. This technique can provide independent control of position, momentum, time and frequency resolution. The OPSTFT is a Wigner distribution function of two independent Fourier transform pairs, phase-space and time-frequency. The OPSTFT can be applied for early disease detection.
Resumo:
As the auditory ossicles are difficult to display without harming them in conventional autopsies, lesions of these minute bones and the ossicular chain are regularly missed. In this study, the method of choice in clinical medicine for the examination of such lesions, namely multislice computed tomography, was applied to 100 corpses. The hereby obtained results regarding ossicle luxation and petrous bone fracture indicated that the lesions were not dependant on the amount, but rather on the type of energy inflicted to the head.
Resumo:
Fatal falls from great height are a frequently encountered setting in forensic pathology. They present--by virtue of a calculable energy transmission to the body--an ideal model for the assessment of the effects of blunt trauma to a human body. As multislice computed tomography (MSCT) has proven not only to be invaluable in clinical examinations, but also to be a viable tool in post-mortem imaging, especially in the field of osseous injuries, we performed a MSCT scan on 20 victims of falls from great height. We hereby detected fractures and their distributions were compared with the impact energy. Our study suggests a marked increase of extensive damage to different body regions at about 20 kJ and more. The thorax was most often affected, regardless of the amount of impacting energy and the primary impact site. Cranial fracture frequency displayed a biphasic distribution with regard to the impacting energy; they were more frequent in energies of less than 10, and more than 20 kJ, but rarer in the intermediate energy group, namely that of 10-20 kJ.
Resumo:
Modern cross-sectional imaging techniques are being increasingly implemented in forensic pathology. These methods may serve as an adjuvant to classic forensic autopsies or even replace them altogether in the future. In order to assess the practicability of such a method, namely post-mortem multislice computed tomography (MSCT) in fatal gunshot injuries, 22 corpses underwent such an examination prior to forensic autopsy. The cardinal questions of the location of entrance and exit wounds, the detection of bullets and bullet fragments in the body, the bullet course, inflicted injuries and cause of death were addressed at MSCT and autopsy. The results of the two techniques revealed that post-mortem MSCT can answer these questions reliably and is therefore a useful tool in the assessment of such injuries.
Resumo:
Modern cross-sectional imaging techniques are being increasingly implemented in forensic pathology. In order to assess the practicability of such a method, namely post-mortem multislice computed tomography (MSCT) in cases of fatal cut and stab injuries, 12 corpses underwent such an examination prior to forensic autopsy. The questions regarding detection of foreign bodies, wound channels, skeletal and organ injuries, as well as the cause of death were addressed at MSCT and autopsy. The results of the two techniques revealed that post-mortem MSCT a useful tool in the assessment of such injuries.
Resumo:
Visualization of the vascular systems of organs or of small animals is important for an assessment of basic physiological conditions, especially in studies that involve genetically manipulated mice. For a detailed morphological analysis of the vascular tree, it is necessary to demonstrate the system in its entirety. In this study, we present a new lipophilic contrast agent, Angiofil, for performing postmortem microangiography by using microcomputed tomography. The new contrast agent was tested in 10 wild-type mice. Imaging of the vascular system revealed vessels down to the caliber of capillaries, and the digital three-dimensional data obtained from the scans allowed for virtual cutting, amplification, and scaling without destroying the sample. By use of computer software, parameters such as vessel length and caliber could be quantified and remapped by color coding onto the surface of the vascular system. The liquid Angiofil is easy to handle and highly radio-opaque. Because of its lipophilic abilities, it is retained intravascularly, hence it facilitates virtual vessel segmentation, and yields an enduring signal which is advantageous during repetitive investigations, or if samples need to be transported from the site of preparation to the place of actual analysis, respectively. These characteristics make Angiofil a promising novel contrast agent; when combined with microcomputed tomography, it has the potential to turn into a powerful method for rapid vascular phenotyping.
Resumo:
OBJECTIVE: Measures to reduce radiation exposure and injected iodine mass are becoming more important with the widespread and often repetitive use of pulmonary CT angiography (CTA) in patients with suspected pulmonary embolism. In this retrospective study, we analyzed the capability of 2 low-kilovoltage CTA-protocols to achieve these goals. MATERIALS AND METHODS: Ninety patients weighing less than 100 kg were examined by a pulmonary CTA protocol using either 100 kVp (group A) or 80 kVp (group B). Volume and flow rate of contrast medium were reduced in group B (75 mL at 3 mL/s) compared with group A (100 mL at 4 mL/s). Attenuation was measured in the central and peripheral pulmonary arteries, and the contrast-to-noise ratios (CNR) were calculated. Entrance skin dose was estimated by measuring the surface dose in an ovoid-cylindrical polymethyl methacrylate chest phantom with 2 various dimensions corresponding to the range of chest diameters in our patients. Quantitative image parameters, estimated effective dose, and skin dose in both groups were compared by the t test. Arterial enhancement, noise, and overall quality were independently assessed by 3 radiologists, and results were compared between the groups using nonparametric tests. RESULTS: Mean attenuation in the pulmonary arteries in group B (427.6 +/- 116 HU) was significantly higher than in group A (342.1 +/- 87.7 HU; P < 0.001), whereas CNR showed no difference (group A, 20.6 +/- 7.3 and group B, 22.2 +/- 7.1; P = 0.302). Effective dose was lower by more than 40% with 80 kVp (1.68 +/- 0.23 mSv) compared with 100 kVp (2.87 +/- 0.88 mSv) (P < 0.001). Surface dose was significantly lower at 80 kVp compared with 100 kVp at both phantom dimensions (2.75 vs. 3.22 mGy; P = 0.027 and 2.22 vs. 2.73 mGy; P = 0.005, respectively). Image quality did not differ significantly between the groups (P = 0.151). CONCLUSIONS: Using 80 kVp in pulmonary CTA permits reduced patient exposure by 40% and CM volume by 25% compared with 100 kVp without deterioration of image quality in patients weighing less than 100 kg.
Resumo:
To analyze the impact of opacities in the optical pathway and image compression of 32-bit raw data to 8-bit jpg images on quantified optical coherence tomography (OCT) image analysis.
Resumo:
To compare central retinal thickness (CRT) measurements in healthy eyes by different commercially available OCT instruments and to compare the intersession reproducibility of such measurements.
Resumo:
PURPOSE: To correlate the dimension of the visual field (VF) tested by Goldman kinetic perimetry with the extent of visibility of the highly reflective layer between inner and outer segments of photoreceptors (IOS) seen in optical coherence tomography (OCT) images in patients with retinitis pigmentosa (RP). METHODS: In a retrospectively designed cross-sectional study, 18 eyes of 18 patients with RP were examined with OCT and Goldmann perimetry using test target I4e and compared with 18 eyes of 18 control subjects. A-scans of raw scan data of Stratus OCT images (Carl Zeiss Meditec, AG, Oberkochen, Germany) were quantitatively analyzed for the presence of the signal generated by the highly reflective layer between the IOS in OCT images. Starting in the fovea, the distance to which this signal was detectable was measured. Visual fields were analyzed by measuring the distance from the center point to isopter I4e. OCT and visual field data were analyzed in a clockwise fashion every 30 degrees , and corresponding measures were correlated. RESULTS: In corresponding alignments, the distance from the center point to isopter I4e and the distance to which the highly reflective signal from the IOS can be detected correlate significantly (r = 0.75, P < 0.0001). The greater the distance in VF, the greater the distance measured in OCT. CONCLUSIONS: The authors hypothesize that the retinal structure from which the highly reflective layer between the IOS emanates is of critical importance for visual and photoreceptor function. Further research is warranted to determine whether this may be useful as an objective marker of progression of retinal degeneration in patients with RP.
Resumo:
BACKGROUND/AIM: To compare the ability of confocal scanning laser tomography (CSLT), scanning laser polarimetry (SLP) and optical coherence tomography (OCT) in recognising localised retinal nerve fibre layer (RNFL) defects. METHODS: 51 eyes from 43 patients with glaucoma were identified by two observers as having RNFL defects visible on optic disc photographs. 51 eyes of 32 normal subjects were used as controls. Three masked observers evaluated CSLT, SLP and OCT images to determine subjectively the presence of localised RNFL defects. RESULTS: Interobserver agreement was highest with OCT, followed by SLP and CSLT (mean kappa: 0.83, 0.69 and 0.64, respectively). RNFL defects were identified in 58.8% of CSLT, 66.7% of SLP and 54.9% of OCT (p = 0.02 between SLP and OCT) by at least two observers. In the controls, 94.1% of CSLT, 84.3% of SLP and 94.1% of OCT scans, respectively, were rated as normal (p = 0.02 between CSLT and SLP, and SLP and OCT). CONCLUSION: Approximately 20-40% of localised RNFL defects identified by colour optic disc photographs are not detected by CSLT, SPL or OCT. SLP showed a higher number of false-positive results than the other techniques, but also had a higher proportion of correctly identified RNFL defects in the glaucoma population.