912 resultados para stereo-immersive VR
Resumo:
Calibration of a camera system is a necessary step in any stereo metric process. It correlates all cameras to a common coordinate system by measuring the intrinsic and extrinsic parameters of each camera. Currently, manual calibration of a camera system is the only way to achieve calibration in civil engineering operations that require stereo metric processes (photogrammetry, videogrammetry, vision based asset tracking, etc). This type of calibration however is time-consuming and labor-intensive. Furthermore, in civil engineering operations, camera systems are exposed to open, busy sites. In these conditions, the position of presumably stationary cameras can easily be changed due to external factors such as wind, vibrations or due to an unintentional push/touch from personnel on site. In such cases manual calibration must be repeated. In order to address this issue, several self-calibration algorithms have been proposed. These algorithms use Projective Geometry, Absolute Conic and Kruppa Equations and variations of these to produce processes that achieve calibration. However, most of these methods do not consider all constraints of a camera system such as camera intrinsic constraints, scene constraints, camera motion or varying camera intrinsic properties. This paper presents a novel method that takes all constraints into consideration to auto-calibrate cameras using an image alignment algorithm originally meant for vision based tracking. In this method, image frames are taken from cameras. These frames are used to calculate the fundamental matrix that gives epipolar constraints. Intrinsic and extrinsic properties of cameras are acquired from this calculation. Test results are presented in this paper with recommendations for further improvement.
Resumo:
Infrastructure spatial data, such as the orientation and the location of in place structures and these structures' boundaries and areas, play a very important role for many civil infrastructure development and rehabilitation applications, such as defect detection, site planning, on-site safety assistance and others. In order to acquire these data, a number of modern optical-based spatial data acquisition techniques can be used. These techniques are based on stereo vision, optics, time of flight, etc., and have distinct characteristics, benefits and limitations. The main purpose of this paper is to compare these infrastructure optical-based spatial data acquisition techniques based on civil infrastructure application requirements. In order to achieve this goal, the benefits and limitations of these techniques were identified. Subsequently, these techniques were compared according to applications' requirements, such as spatial accuracy, the automation of acquisition, the portability of devices and others. With the help of this comparison, unique characteristics of these techniques were identified so that practitioners will be able to select an appropriate technique for their own applications.
Resumo:
Infrastructure spatial data, such as the orientation and the location of in place structures and these structures' boundaries and areas, play a very important role for many civil infrastructure development and rehabilitation applications, such as defect detection, site planning, on-site safety assistance and others. In order to acquire these data, a number of modern optical-based spatial data acquisition techniques can be used. These techniques are based on stereo vision, optics, time of flight, etc., and have distinct characteristics, benefits and limitations. The main purpose of this paper is to compare these infrastructure optical-based spatial data acquisition techniques based on civil infrastructure application requirements. In order to achieve this goal, the benefits and limitations of these techniques were identified. Subsequently, these techniques were compared according to applications' requirements, such as spatial accuracy, the automation of acquisition, the portability of devices and others. With the help of this comparison, unique characteristics of these techniques were identified so that practitioners will be able to select an appropriate technique for their own applications.
Resumo:
Most of the existing automated machine vision-based techniques for as-built documentation of civil infrastructure utilize only point features to recover the 3D structure of a scene. However it is often the case in man-made structures that not enough point features can be reliably detected (e.g. buildings and roofs); this can potentially lead to the failure of these techniques. To address the problem, this paper utilizes the prominence of straight lines in infrastructure scenes. It presents a hybrid approach that benefits from both point and line features. A calibrated stereo set of video cameras is used to collect data. Point and line features are then detected and matched across video frames. Finally, the 3D structure of the scene is recovered by finding 3D coordinates of the matched features. The proposed approach has been tested on realistic outdoor environments and preliminary results indicate its capability to deal with a variety of scenes.
Resumo:
Vision trackers have been proposed as a promising alternative for tracking at large-scale, congested construction sites. They provide the location of a large number of entities in a camera view across frames. However, vision trackers provide only two-dimensional (2D) pixel coordinates, which are not adequate for construction applications. This paper proposes and validates a method that overcomes this limitation by employing stereo cameras and converting 2D pixel coordinates to three-dimensional (3D) metric coordinates. The proposed method consists of four steps: camera calibration, camera pose estimation, 2D tracking, and triangulation. Given that the method employs fixed, calibrated stereo cameras with a long baseline, appropriate algorithms are selected for each step. Once the first two steps reveal camera system parameters, the third step determines 2D pixel coordinates of entities in subsequent frames. The 2D coordinates are triangulated on the basis of the camera system parameters to obtain 3D coordinates. The methodology presented in this paper has been implemented and tested with data collected from a construction site. The results demonstrate the suitability of this method for on-site tracking purposes.
Resumo:
In this paper, we report on the realisation of a free space deposition process (FSD). For the first time the use of a moving support structure to deposit tracks of metal starting from a substrate and extending into free space is characterised. The ability to write metal shapes in free space has wide ranging applications in additive manufacturing and rapid prototyping where the tracks can be layered to build overhanging features without the use of fixed support structures (such as is used in selective laser melting (SLM) and stereo lithography (SLA)). We demonstrate and perform a preliminary characterisation of the process in which a soldering iron was used to deposit lead free solder tracks. The factors affecting the stability of tracks and the effect of operating parameters, temperature, velocity, initial track starting diameter and starting volume were measured. A series of 10 tracks at each setting were compared with a control group of tracks; the track width, taper and variation between tracks were compared. Notable results in free space track deposition were that the initial track diameter and volume affected the repeatability and quality of tracks. The standard deviation of mean track width of tracks from the constrained initial diameter group were half that of the unconstrained group. The amount of material fed to the soldering iron before commencing deposition affected the taper of tracks. At an initial volume of 7 mm3 and an initial track diameter of 0.8 mm, none of the ten tracks deposited broke or showed taper > ∼1°. The maximum deposition velocity for free space track deposition using lead-free solder was limited to 1.5 mm s-1. © 2011 Elsevier B.V. All rights reserved.
A Videogrammetric As-Built Data Collection Method for Digital Fabrication of Sheet Metal Roof Panels
Resumo:
A roofing contractor typically needs to acquire as-built dimensions of a roof structure several times over the course of its build to be able to digitally fabricate sheet metal roof panels. Obtaining these measurements using the exiting roof surveying methods could be costly in terms of equipment, labor, and/or worker exposure to safety hazards. This paper presents a video-based surveying technology as an alternative method which is simple to use, automated, less expensive, and safe. When using this method, the contractor collects video streams with a calibrated stereo camera set. Unique visual characteristics of scenes from a roof structure are then used in the processing step to automatically extract as-built dimensions of roof planes. These dimensions are finally represented in a XML format to be loaded into sheet metal folding and cutting machines. The proposed method has been tested for a roofing project and the preliminary results indicate its capabilities.
Resumo:
This paper presents the production and testing of an ortho-planar one-way micro-valve. The main advantages of such valves are that they are very compact and can be made from a single flat piece of material. A previous paper presents and discusses a micro-valve assembly based on a spider spring. The present paper focuses on the valve assembly process and the valve performance.. Several prototypes with a bore of 0.2 mm have been built using two manufacturing techniques (μEDM and stereo-lithography) and tested for pressures up to 7 bars. © 2008 International Federation for Information Processing.
Resumo:
This paper demonstrates the application of laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques to a particle-laden reacting flow of pulverized coal. A laboratory-scale open-type annular burner is utilized to generate velocity profiles of coal particles and micrometric alumina particles. Pair-wise two-component LDV measurements and high-speed stereo PIV measurements provide three-dimensional velocity components of the flow field. A detailed comparison of velocities for alumina and coal particle seeding revealed differences attributed to the wide size distribution of coal particles. In addition, the non-spherical shape and high flame luminosity associated with coal particle combustion introduces noise to the Mie scatter images. The comparison of mean and RMS velocities measured by LDV and PIV techniques showed that PIV measurements are affected by the wide size distribution of coal particles, whereas LDV measurements become biased toward the velocity of small particles, as signals from large particles are rejected. This small-particle bias is also reflected in the spectral characteristics for both techniques, which are in good agreement within the range of frequencies accessible. PIV measurements showed an expected lack of response of large coal particles to the turbulence fluctuations. The overall good agreement between LDV and PIV measurements demonstrates the applicability of the high-speed PIV technique to a particle-laden, high luminosity coal flame while highlighting some of its limitations. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The detection performance regarding stationary acoustic monitoring of Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis was compared to visual observations. Three stereo acoustic data loggers (A-tag) were placed at different locations near the confluence of Poyang Lake and the Yangtze River, China. The presence and number of porpoises were determined acoustically and visually during each 1-min time bin. On average, porpoises were acoustically detected 81.7 +/- 9.7% of the entire effective observation time, while the presence of animals was confirmed visually 12.7 +/- 11.0% of the entire time. Acoustic monitoring indicated areas of high and low porpoise densities that were consistent with visual observations. The direction of porpoise movement was monitored using stereo beams, which agreed with visual observations at all monitoring locations. Acoustic and visual methods could determine group sizes up to five and ten individuals, respectively. While the acoustic monitoring method had the advantage of high detection probability, it tended to underestimate group size due to the limited resolution of sound source bearing angles. The stationary acoustic monitoring method proved to be a practical and useful alternative to visual observations, especially in areas of low porpoise density for long-term monitoring.
Resumo:
Yangtze finless porpoises were surveyed by using simultaneous visual and acoustical methods from 6 November to 13 December 2006. Two research vessels towed stereo acoustic data loggers, which were used to store the intensity and sound source direction of the high frequency sonar signals produced by finless porpoises at detection ranges up to 300 m on each side of the vessel. Simple stereo beam forming allowed the separation of distinct biosonar sound source, which enabled us to count the number of vocalizing porpoises. Acoustically, 204 porpoises were detected from one vessel and 199 from the other vessel in the same section of the Yangtze River. Visually, 163 and 162 porpoises were detected from two vessels within 300 m of the vessel track. The calculated detection probability using acoustic method was approximately twice that for visual detection for each vessel. The difference in detection probabilities between the two methods was caused by the large number of single individuals that were missed by visual observers. However, the sizes of large groups were underestimated by using the acoustic methods. Acoustic and visual observations complemented each other in the accurate detection of porpoises. The use of simple, relatively inexpensive acoustic monitoring systems should enhance population surveys of free-ranging, echolocating odontocetes. (C) 2008 Acoustical Society of America.
Resumo:
Mobile video and gaming are now widely used, and delivery of a glass-free 3D experience is of both research and development interest. The key drawbacks of a conventional 3D display based on a static lenticular lenslet array and parallax barriers are low resolution, limited viewing angle and reduced brightness, mainly because of the need of multiple-pixels for each object point. This study describes the concept and performance of pixel-level cylindrical liquid crystal (LC) lenses, which are designed to steer light to the left and right eye sequentially to form stereo parallax. The width of the LC lenses can be as small as 20-30 μm, so that the associated auto-stereoscopic display will have the same resolution as the 2D display panel in use. Such a thin sheet of tunable LC lens array can be applied directly on existing mobile displays, and can deliver 3D viewing experience while maintaining 2D viewing capability. Transparent electrodes were laser patterned to achieve the single pixel lens resolution, and a high birefringent LC material was used to realise a large diffraction angle for a wide field of view. Simulation was carried out to model the intensity profile at the viewing plane and optimise the lens array based on the measured LC phase profile. The measured viewing angle and intensity profile were compared with the simulation results. © 2014 SPIE.
Resumo:
A ZnTe layer grown on GaAs substrate by hot-wall epitaxy (HWE) was studied using transmission electron microscopy (TEM). For a (110) cross-sectional specimen, its (001) ZnTe/GaAs interface was analysed by large angle stereo-projection (LASP) and high resolution electron microscopy (HREM). In the LASP, a double diffraction occurred and moire fringes were formed, meanwhile misfit dislocations were revealled clearly by weak beam technique. In HREM, not only Lomer and 60 degrees types of misfit dislocations were observed, but also two types of stacking faults were analysed. The residual strain was estimated by both methods.
Resumo:
D-vision系统(这里"D"有"Divide Screen"和"Duplex-Vision"双重含义)是一类基于PC机群的多投影虚拟现实系统(或简称多投影系统).给出D-vision系统中双手6自由度力觉交互的实现过程:在客户端协同控制两个力觉交互设备Spidar-G(Space Interface for Artificial Reality withGrip)实现双手协作交互,其次构造一个基于UDP的Socket类完成客户端和绘制服务器节点之间的通讯,传递跟踪球的位置、方向等信息;然后,通过分布绘制实现在大屏幕上无缝显示.最后实验结果表明:在D-vision系统中双手6自由度力觉交互是一种自然直观的人机交互方式.
Resumo:
虚拟现实中的交互手势包括多种不同类型,层次化建模方法避免了采用单一模型导致效率不高的问题.识别是一个由粗到精的过程,通过滑动窗技术实时提取手势的统计特征,实现手势类别的粗略划分,然后采用不同方法对各类手势进行分析.交互环境及上下文信息用以辅助手势的类别划分,提高了识别效率.最后通过虚拟家居系统对该方法进行了验证.