912 resultados para stampa, 3D, manifattura, additiva, prototipazione


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structured AbstractObjectivesTo investigate the 3D morphological variations in 169 temporomandibular ioint (TMJ) condyles, using novel imaging statistical modeling approaches.Setting and sample populationThe Department of Orthodontics and Pediatric Dentistry at the University of Michigan. Cone beam CT scans were acquired from 69 subjects with long-term TMJ osteoarthritis (OA, mean age 39.115.7years), 15 subjects at initial consult diagnosis of OA (mean age 44.914.8years), and seven healthy controls (mean age 4312.4years).Materials and methods3D surface models of the condyles were constructed, and homologous correspondent points on each model were established. The statistical framework included Direction-Projection-Permutation (DiProPerm) for testing statistical significance of the differences between healthy controls and the OA groups determined by clinical and radiographic diagnoses.ResultsCondylar morphology in OA and healthy subjects varied widely with categorization from mild to severe bone degeneration or overgrowth. DiProPerm statistics supported a significant difference between the healthy control group and the initial diagnosis of OA group (t=6.6, empirical p-value=0.006) and between healthy and long-term diagnosis of OA group (t=7.2, empirical p-value=0). Compared with healthy controls, the average condyle in OA subjects was significantly smaller in all dimensions, except its anterior surface, even in subjects with initial diagnosis of OA.ConclusionThis new statistical modeling of condylar morphology allows the development of more targeted classifications of this condition than previously possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon fiber reinforced carbon composites can be made by iterative liquid impregnation or gas phase carbon deposition routes. In both cases, at the final processing stage the carbon fiber is embedded in carbon matrix which results in unique properties such as low density, high thermal conductivity and thermal shock resistance, low thermal expansion and high modulus, in relation to other refractory materials. In the present study assembled three-directional and four-directional preforms, having 50% volume of pores, were densified by iterative cycles of thermoset resin impregnation followed by pyrolysis under inert atmosphere, until appropriate densities were achieved. The thermoset resin is converted in a carbon matrix during pyrolysis. The iterative manufacturing process of the carbon fiber reinforced carbon composites is evaluated by means of nondestructive techniques based on X-ray computed tomography and electrical resistivity. X-ray computed tomography gives a general mapping view of the filling pores of the preforms which impacts results of the electrical resistivity. After six processing cycles and heat treatments up to 2000?, the final densities of the three-directional and four-directional carbon fiber reinforced carbon composites were 1.16g/cm(3) and an electrical resistivity of approximate to 0.07m. The configuration of preforms, three-directional or four-directional, did not alter the densification profile, in terms of increasing density and reducing porosity during the processing cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Bases Gerais da Cirurgia - FMB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Design - FAAC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the biomechanical behavior of different implant connection types, by means of three-dimensional finite element analysis. 3 Three-dimensional models were created with a graphic modeling software: SolidWorks 2006 and Rhinoceros 4.0, and InVesalius (CTI, São Paulo, Brasil), the bone was obtained by computerized tomography of a sagittal section of the molar region. The model was composed by bone block with an implant (4 x 10 mm) (Conexão Sistemas de Prótese, São Paulo), with different implant connections: external hex, internal hex and Morse-taper with the corresponding prosthetic component Ucla or Morse-taper abutment. The Three-dimensional models were transferred to finite element software Femap 10.0 (Siemens PLM Software Inc., CA, USA), to generate a mesh, boundary conditions and loading. An axial (200N) and oblique load (100N) was applied on the occlusal surface of the crowns. Analyses were performed using the finite element software NEiNastran 9.0 (Noran Engineering, Inc., USA) and transferred to the Femap 10.0 to obtain the results; after the results were visualized using von Mises stress maps and Maximum stress principal. The results showed the stress distribution was similar between models, with a little superiority of Morse-taper connection. It was concluded that: the three connection types were biomechanical viable; The Morse-taper connection presented the better internal stress distribution; there was not significant biomechanical differences on the bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of computer-assisted technologies such as CAD - Computed Aided Design, CAM - Computed Aided Manufacturing, CAE - Computed Aided Engineering and CNC - Computed Numerical Control, are priorities in engineering and product designers. However, the dimensional measurement between the virtual and the real product design requires research, and dissemination procedures among its users. This work aims to use these technologies, through analysis and measurement of a CNC milling machine, designed and assembled in the university. Through the use of 3D scanning, and analyzing images of the machined samples, and its original virtual files, it was possible to compare the sizes of these samples in counterposition to the original virtual dimensions, we can state that the distortions between the real and virtual, are within acceptable limits for this type of equipment. As a secondary objective, this work seeks to disseminate and make more accessible the use of these technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Televisão Digital: Informação e Conhecimento - FAAC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Educação para a Ciência - FC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research presents an investigation about the relevance of visualization in teaching geometry. Our interest turns to analyzing the use of technology in teaching geometry, seeking to highlight their contribution to learning. The students of today - second decade of the 21st century - require that, each time more, the school move towards the integration of technologies for teaching since tablets, smartphone, netbook, notebook are items present on daily life of most students. Thereby, we investigate, taking the phenomenological orientation, the potential of educational software, especially the Geogebra 3D, directed at teaching math and favoring the work with the geometry viewing. At work we bring some theoretical considerations about the importance of viewing for the geometric learning and the use of technologies. We build an intervention proposal for the classroom of the 7th year of elementary school with tasks aimed at visual exploration and allow the teacher to work the concept of volume of geometric solids

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research presents an investigation about the relevance of visualization in teaching geometry. Our interest turns to analyzing the use of technology in teaching geometry, seeking to highlight their contribution to learning. The students of today - second decade of the 21st century - require that, each time more, the school move towards the integration of technologies for teaching since tablets, smartphone, netbook, notebook are items present on daily life of most students. Thereby, we investigate, taking the phenomenological orientation, the potential of educational software, especially the Geogebra 3D, directed at teaching math and favoring the work with the geometry viewing. At work we bring some theoretical considerations about the importance of viewing for the geometric learning and the use of technologies. We build an intervention proposal for the classroom of the 7th year of elementary school with tasks aimed at visual exploration and allow the teacher to work the concept of volume of geometric solids

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine whether image artifacts caused by orthodontic metal accessories interfere with the accuracy of 3D CBCT model superimposition. A human dry skull was subjected three times to a CBCT scan: at first without orthodontic brackets (T1), then with stainless steel brackets bonded without (T2) and with orthodontic arch wires (T3) inserted into the brackets' slots. The registration of image surfaces and the superimposition of 3D models were performed. Within-subject surface distances between T1-T2, T1-T3 and T2-T3 were computed and calculated for comparison among the three data sets. The minimum and maximum Hausdorff Distance units (HDu) computed between the corresponding data points of the T1 and T2 CBCT 3D surface images were 0.000000 and 0.049280 HDu, respectively, and the mean distance was 0.002497 HDu. The minimum and maximum Hausdorff Distances between T1 and T3 were 0.000000 and 0.047440 HDu, respectively, with a mean distance of 0.002585 HDu. In the comparison between T2 and T3, the minimum, maximum and mean Hausdorff Distances were 0.000000, 0.025616 and 0.000347 HDu, respectively. In the current study, the image artifacts caused by metal orthodontic accessories did not compromise the accuracy of the 3D model superimposition. Color-coded maps of overlaid structures complemented the computed Hausdorff Distances and demonstrated a precise fusion between the data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A contaminated site from a downstream municipal solid waste disposal site in Brazil was investigated by using a 3D resistivity and induced polarization (IP) imaging technique. This investigation purpose was to detect and delineate contamination plume produced by wastes. The area was selected based on previous geophysical investigations, and chemical analyses carried out in the site, indicating the presence of a contamination plume in the area. Resistivity model has successfully imaged waste presence (rho < 20 Omega m), water table depth, and groundwater flow direction. A conductive anomaly (rho < 20 Omega m) outside wastes placement was interpreted as a contamination plume. Chargeability model was also able to imaging waste presence (m > 31 mV/V), water table depth, and groundwater flow direction. A higher chargeability zone (m > 31 mV/V) outside wastes placement and following conductive anomaly was interpreted as a contamination plume. Normalized chargeability (MN = m/rho) confirmed polarizable zone, which could be an effect of a salinity increase (contamination plume), and the clay presence in the environment.