946 resultados para src Homology Domains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The syndecans are transmembrane proteoglycans that place structurally heterogeneous heparan sulfate chains at the cell surface and a highly conserved polypeptide in the cytoplasm. Their versatile heparan sulfate moieties support various processes of molecular recognition, signaling, and trafficking. Here we report the identification of a protein that binds to the cytoplasmic domains of the syndecans in yeast two-hybrid screens, surface plasmon resonance experiments, and ligand-overlay assays. This protein, syntenin, contains a tandem repeat of PDZ domains that reacts with the FYA C-terminal amino acid sequence of the syndecans. Recombinant enhanced green fluorescent protein (eGFP)–syntenin fusion proteins decorate the plasmamembrane and intracellular vesicles, where they colocalize and cosegregate with syndecans. Cells that overexpress eGFP–syntenin show numerous cell surface extensions, suggesting effects of syntenin on cytoskeleton–membrane organization. We propose that syntenin may function as an adaptor that couples syndecans to cytoskeletal proteins or cytosolic downstream signal-effectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Krüppel-associated box (KRAB) domain, originally identified as a 75-aa sequence present in numerous Krüppel-type zinc-finger proteins, is a potent DNA-binding-dependent transcriptional repression domain that is believed to function through interaction with the transcriptional intermediary factor 1 (TIF1) β. On the basis of sequence comparison and phylogenetic analysis, we have recently defined three distinct subfamilies of KRAB domains. In the present study, individual members of each subfamily were tested for transcriptional repression and interaction with TIF1β and two other closely related family members (TIF1α and TIF1γ). All KRAB variants were shown, (i) to repress transcription when targeted to DNA through fusion to a heterologous DNA-binding domain in mammalian cells, and (ii) to interact specifically with TIF1β, but not with TIF1α or TIF1γ. Taken together, these results implicate TIF1β as a common transcriptional corepressor for the three distinct subfamilies of KRAB zinc-finger proteins and suggest a high degree of conservation in the molecular mechanism underlying their transcriptional repression activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) mediate cell attachment and stress transfer through extracellular domains. Here we forcibly unfold the Ig domains of a prototypical Ig superfamily CAM that contains intradomain disulfide bonds. The Ig domains of all such CAMs have conformations homologous to cadherin extracellular domains, titin Ig-type domains, and fibronectin type-III (FNIII) domains. Atomic force microscopy has been used to extend the five Ig domains of Mel-CAM (melanoma CAM)—a protein that is overexpressed in metastatic melanomas—under conditions where the disulfide bonds were either left intact or disrupted through reduction. Under physiological conditions where intradomain disulfide bonds are intact, partial unfolding was observed at forces far smaller than those reported previously for either titin's Ig-type domains or tenascin's FNIII domains. This partial unfolding under low force may be an important mechanism for imparting elasticity to cell–cell contacts, as well as a regulatory mechanism for adhesive interactions. Under reducing conditions, Mel-CAM's Ig domains were found to fully unfold through a partially folded state and at slightly higher forces. The results suggest that, in divergent evolution of all such domains, stabilization imparted by disulfide bonds relaxes requirements for strong, noncovalent, folded-state interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EBV-encoded nuclear antigen-1 (EBNA-1) binding to a cis-acting viral DNA element, oriP, enables plasmids to persist in dividing human cells as multicopy episomes that attach to chromosomes during mitosis. In investigating the significance of EBNA-1 binding to mitotic chromosomes, we identified the basic domains of EBNA-1 within amino acids 1–89 and 323–386 as critical for chromosome binding. In contrast, the EBNA-1 C terminus (amino acids 379–641), which includes the nuclear localization signal and DNA-binding domain, does not associate with mitotic chromosomes or retain oriP plasmid DNA in dividing cell nuclei, but does enable the accumulation of replicated oriP-containing plasmid DNA in transient replication assays. The importance of chromosome association in episome maintenance was evaluated by replacing EBNA-1 amino acids 1–378 with cell proteins that have similar chromosome binding characteristics. High-mobility group-I amino acids 1–90 or histone H1–2 could substitute for EBNA-1 amino acids 1–378 in mediating more efficient accumulation of replicated oriP plasmid, association with mitotic chromosomes, nuclear retention, and long-term episome persistence. These data strongly support the hypothesis that mitotic chromosome association is a critical factor for episome maintenance. The replacement of 60% of EBNA-1 with cell protein is a significant step toward eliminating the need for noncellular protein sequences in the maintenance of episomal DNA in human cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To initiate homologous recombination, sequence similarity between two DNA molecules must be searched for and homology recognized. How the search for and recognition of homology occurs remains unproven. We have examined the influences of DNA topology and the polarity of RecA–single-stranded (ss)DNA filaments on the formation of synaptic complexes promoted by RecA. Using two complementary methods and various ssDNA and duplex DNA molecules as substrates, we demonstrate that topological constraints on a small circular RecA–ssDNA filament prevent it from interwinding with its duplex DNA target at the homologous region. We were unable to detect homologous pairing between a circular RecA–ssDNA filament and its relaxed or supercoiled circular duplex DNA targets. However, the formation of synaptic complexes between an invading linear RecA–ssDNA filament and covalently closed circular duplex DNAs is promoted by supercoiling of the duplex DNA. The results imply that a triplex structure formed by non-Watson–Crick hydrogen bonding is unlikely to be an intermediate in homology searching promoted by RecA. Rather, a model in which RecA-mediated homology searching requires unwinding of the duplex DNA coupled with local strand exchange is the likely mechanism. Furthermore, we show that polarity of the invading RecA–ssDNA does not affect its ability to pair and interwind with its circular target duplex DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the representation difference analysis technique, we have identified a novel gene, Ian4, which is preferentially expressed in hematopoietic precursor 32D cells transfected with wild-type versus mutant forms of the Bcr/Abl oncogene. Ian4 expression was undetectable in 32D cells transfected with v-src, oncogenic Ha-ras or v-Abl. Murine Ian4 maps to chromosome 6, 25 cM from the centromere. The Ian4 mRNA contains two open reading frames (ORFs) separated by 5 nt. The first ORF has the potential to encode for a polypeptide of 67 amino acids without apparent homology to known proteins. The second ORF encodes a protein of 301 amino acids with a GTP/ATP-binding site in the N-terminus and a hydrophobic domain in the extreme C-terminus. The IAN-4 protein resides in the mitochondrial outer membrane and the last 20 amino acids are necessary for this localization. The IAN-4 protein has GTP-binding activity and shares sequence homology with a novel family of putative GTP-binding proteins: the immuno-associated nucleotide (IAN) family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transformation-associated recombination (TAR) cloning technique allows selective and accurate isolation of chromosomal regions and genes from complex genomes. The technique is based on in vivo recombination between genomic DNA and a linearized vector containing homologous sequences, or hooks, to the gene of interest. The recombination occurs during transformation of yeast spheroplasts that results in the generation of a yeast artificial chromosome (YAC) containing the gene of interest. To further enhance and refine the TAR cloning technology, we determined the minimal size of a specific hook required for gene isolation utilizing the Tg.AC mouse transgene as a targeted region. For this purpose a set of vectors containing a B1 repeat hook and a Tg.AC-specific hook of variable sizes (from 20 to 800 bp) was constructed and checked for efficiency of transgene isolation by a radial TAR cloning. When vectors with a specific hook that was ≥60 bp were utilized, ∼2% of transformants contained circular YACs with the Tg.AC transgene sequences. Efficiency of cloning dramatically decreased when the TAR vector contained a hook of 40 bp or less. Thus, the minimal length of a unique sequence required for gene isolation by TAR is ∼60 bp. No transgene-positive YAC clones were detected when an ARS element was incorporated into a vector, demonstrating that the absence of a yeast origin of replication in a vector is a prerequisite for efficient gene isolation by TAR cloning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signature databases are vital tools for identifying distant relationships in novel sequences and hence for inferring protein function. InterPro is an integrated documentation resource for protein families, domains and functional sites, which amalgamates the efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. Each InterPro entry includes a functional description, annotation, literature references and links back to the relevant member database(s). Release 2.0 of InterPro (October 2000) contains over 3000 entries, representing families, domains, repeats and sites of post-translational modification encoded by a total of 6804 different regular expressions, profiles, fingerprints and Hidden Markov Models. Each InterPro entry lists all the matches against SWISS-PROT and TrEMBL (more than 1 000 000 hits from 462 500 proteins in SWISS-PROT and TrEMBL). The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. Questions can be emailed to interhelp@ebi.ac.uk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used integrin αLβ2 heterodimers containing I domains locked open (active) or closed (inactive) with disulfide bonds to investigate regulatory interactions among domains in integrins. mAbs to the αL I domain and β2 I-like domain inhibit adhesion of wild-type αLβ2 to intercellular adhesion molecule-1. However, with αLβ2 containing a locked open I domain, mAbs to the I domain were subdivided into subsets (i) that did not inhibit, and thus appear to inhibit by favoring the closed conformation, and (ii) that did inhibit, and thus appear to bind to the ligand binding site. Furthermore, αLβ2 containing a locked open I domain was completely resistant to inhibition by mAbs to the β2 I-like domain, but became fully susceptible to inhibition after disulfide reduction with DTT. This finding suggests that the I-like domain indirectly contributes to ligand binding by regulating opening of the I domain in wild-type αLβ2. Conversely, locking the I domain closed partially restrained conformational change of the I-like domain by Mn2+, as measured with mAb m24, which we map here to the β2 I-like domain. By contrast, locking the I domain closed or open did not affect constitutive or Mn2+-induced exposure of the KIM127 epitope in the β2 stalk region. Furthermore, locked open I domains, in αLβ2 complexes or expressed in isolation on the cell surface, bound to intercellular adhesion molecule-1 equivalently in Mg2+ and Mn2+. These results suggest that Mn2+ activates αLβ2 by binding to a site other than the I domain, most likely the I-like domain of β2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The K homology (KH) module is a widespread RNA-binding motif that has been detected by sequence similarity searches in such proteins as heterogeneous nuclear ribonucleoprotein K (hnRNP K) and ribosomal protein S3. Analysis of spatial structures of KH domains in hnRNP K and S3 reveals that they are topologically dissimilar and thus belong to different protein folds. Thus KH motif proteins provide a rare example of protein domains that share significant sequence similarity in the motif regions but possess globally distinct structures. The two distinct topologies might have arisen from an ancestral KH motif protein by N- and C-terminal extensions, or one of the existing topologies may have evolved from the other by extension, displacement and deletion. C-terminal extension (deletion) requires β-sheet rearrangement through the insertion (removal) of a β-strand in a manner similar to that observed in serine protease inhibitors serpins. Current analysis offers a new look on how proteins can change fold in the course of evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human prion gene contains five copies of a 24 nt repeat that is highly conserved among species. An analysis of folding free energies of the human prion mRNA, in particular in the repeat region, suggested biased codon selection and the presence of RNA patterns. In particular, pseudoknots, similar to the one predicted by Wills in the human prion mRNA, were identified in the repeat region of all available prion mRNAs available in GenBank, but not those of birds and the red slider turtle. An alignment of these mRNAs, which share low sequence homology, shows several co-variations that maintain the pseudoknot pattern. The presence of pseudoknots in yeast Sup35p and Rnq1 suggests acquisition in the prokaryotic era. Computer generated three-dimensional structures of the human prion pseudoknot highlight protein and RNA interaction domains, which suggest a possible effect in prion protein translation. The role of pseudoknots in prion diseases is discussed as individuals with extra copies of the 24 nt repeat develop the familial form of Creutzfeldt–Jakob disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p300 and CBP participate as transcriptional coregulators in the execution of a wide spectrum of cellular gene expression programs controlling cell differentiation, growth and homeostasis. Both proteins act together with sequence-specific transcription factors to modify chromatin structure of target genes via their intrinsic acetyltransferase activity directed towards core histones and some transcription factors. So far, p300-related proteins have been described in animals ranging from Drosophila and Caenorhabditis elegans to humans. In this report, we describe p300/CBP-like polypeptides in the plant Arabidopsis thaliana. Interestingly, homology between animal and plant p300/CBP is largely restricted to a C-terminal segment, about 600 amino acids in length, which encompasses acetyltransferase and E1A-binding domains. We have examined whether this conservation in sequence is paralleled by a conservation in function. The same amino acid residues critical for acetyltransferase activity in human p300 are also critical for the function of one of the plant orthologs. Remarkably, plant proteins bind to the adenovirus E1A protein in a manner recapitulating the binding specificity of mammalian p300/CBP. The striking conservation of an extended segment of p300/CBP suggests that it may constitute a functional entity fulfilling functions that may be essential for all metazoan organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport of proteins through the ALP (alkaline phosphatase) pathway to the vacuole requires the function of the AP-3 adaptor complex and Vps41p. However, unlike other adaptor protein–dependent pathways, the ALP pathway has not been shown to require additional accessory proteins or coat proteins, such as membrane recruitment factors or clathrin. Two independent genetic approaches have been used to identify new mutants that affect transport through the ALP pathway. These screens yielded new mutants in both VPS41 and the four AP-3 subunit genes. Two new VPS41 alleles exhibited phenotypes distinct from null mutants of VPS41, which are defective in vacuolar morphology and protein transport through both the ALP and CPY sorting pathways. The new alleles displayed severe ALP sorting defects, normal vacuolar morphology, and defects in ALP vesicle formation at the Golgi complex. Sequencing analysis of these VPS41 alleles revealed mutations encoding amino acid changes in two distinct domains of Vps41p: a conserved N-terminal domain and a C-terminal clathrin heavy-chain repeat (CHCR) domain. We demonstrate that the N-terminus of Vps41p is required for binding to AP-3, whereas the C-terminal CHCR domain directs homo-oligomerization of Vps41p. These data indicate that a homo-oligomeric form of Vps41p is required for the formation of ALP containing vesicles at the Golgi complex via interactions with AP-3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phototropin, a major blue-light receptor for phototropism in seed plants, exhibits blue-light-dependent autophosphorylation and contains two light, oxygen, or voltage (LOV) domains and a serine/threonine kinase domain. The LOV domains share homology with the PER-ARNT-SIM (PAS) superfamily, a diverse group of sensor proteins. Each LOV domain noncovalently binds a single FMN molecule and exhibits reversible photochemistry in vitro when expressed separately or in tandem. We have determined the crystal structure of the LOV2 domain from the phototropin segment of the chimeric fern photoreceptor phy3 to 2.7-Å resolution. The structure constitutes an FMN-binding fold that reveals how the flavin cofactor is embedded in the protein. The single LOV2 cysteine residue is located 4.2 Å from flavin atom C(4a), consistent with a model in which absorption of blue light induces formation of a covalent cysteinyl-C(4a) adduct. Residues that interact with FMN in the phototropin segment of the chimeric fern photoreceptor (phy3) LOV2 are conserved in LOV domains from phototropin of other plant species and from three proteins involved in the regulation of circadian rhythms in Arabidopsis and Neurospora. This conservation suggests that these domains exhibit the same overall fold and share a common mechanism for flavin binding and light-induced signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast Rsp5p and its mammalian homologue, Nedd4, are hect domain ubiquitin-protein ligases (E3s) required for the ubiquitin-dependent endocytosis of plasma membrane proteins. Because ubiquitination is sufficient to induce internalization, E3-mediated ubiquitination is a key regulatory event in plasma membrane protein endocytosis. Rsp5p is an essential, multidomain protein containing an amino-terminal C2 domain, three WW protein-protein interaction domains, and a carboxy-terminal hect domain that carries E3 activity. In this study, we demonstrate that Rsp5p is peripherally associated with membranes and provide evidence that Rsp5p functions as part of a multimeric protein complex. We define the function of Rsp5p and its domains in the ubiquitin-dependent internalization of the yeast α-factor receptor, Ste2p. Temperature-sensitive rsp5 mutants were unable to ubiquitinate or to internalize Ste2p at the nonpermissive temperature. Deletion of the entire C2 domain had no effect on α-factor internalization; however, point mutations in any of the three WW domains impaired both receptor ubiquitination and internalization. These observations indicate that the WW domains play a role in the important regulatory event of selecting phosphorylated proteins as endocytic cargo. In addition, mutations in the C2 and WW1 domains had more severe defects on transport of fluid-phase markers to the vacuole than on receptor internalization, suggesting that Rsp5p functions at multiple steps in the endocytic pathway.