853 resultados para spine motion segment stiffness
Resumo:
This thesis proposes a solution to the problem of estimating the motion of an Unmanned Underwater Vehicle (UUV). Our approach is based on the integration of the incremental measurements which are provided by a vision system. When the vehicle is close to the underwater terrain, it constructs a visual map (so called "mosaic") of the area where the mission takes place while, at the same time, it localizes itself on this map, following the Concurrent Mapping and Localization strategy. The proposed methodology to achieve this goal is based on a feature-based mosaicking algorithm. A down-looking camera is attached to the underwater vehicle. As the vehicle moves, a sequence of images of the sea-floor is acquired by the camera. For every image of the sequence, a set of characteristic features is detected by means of a corner detector. Then, their correspondences are found in the next image of the sequence. Solving the correspondence problem in an accurate and reliable way is a difficult task in computer vision. We consider different alternatives to solve this problem by introducing a detailed analysis of the textural characteristics of the image. This is done in two phases: first comparing different texture operators individually, and next selecting those that best characterize the point/matching pair and using them together to obtain a more robust characterization. Various alternatives are also studied to merge the information provided by the individual texture operators. Finally, the best approach in terms of robustness and efficiency is proposed. After the correspondences have been solved, for every pair of consecutive images we obtain a list of image features in the first image and their matchings in the next frame. Our aim is now to recover the apparent motion of the camera from these features. Although an accurate texture analysis is devoted to the matching pro-cedure, some false matches (known as outliers) could still appear among the right correspon-dences. For this reason, a robust estimation technique is used to estimate the planar transformation (homography) which explains the dominant motion of the image. Next, this homography is used to warp the processed image to the common mosaic frame, constructing a composite image formed by every frame of the sequence. With the aim of estimating the position of the vehicle as the mosaic is being constructed, the 3D motion of the vehicle can be computed from the measurements obtained by a sonar altimeter and the incremental motion computed from the homography. Unfortunately, as the mosaic increases in size, image local alignment errors increase the inaccuracies associated to the position of the vehicle. Occasionally, the trajectory described by the vehicle may cross over itself. In this situation new information is available, and the system can readjust the position estimates. Our proposal consists not only in localizing the vehicle, but also in readjusting the trajectory described by the vehicle when crossover information is obtained. This is achieved by implementing an Augmented State Kalman Filter (ASKF). Kalman filtering appears as an adequate framework to deal with position estimates and their associated covariances. Finally, some experimental results are shown. A laboratory setup has been used to analyze and evaluate the accuracy of the mosaicking system. This setup enables a quantitative measurement of the accumulated errors of the mosaics created in the lab. Then, the results obtained from real sea trials using the URIS underwater vehicle are shown.
Resumo:
El treball desenvolupat en aquesta tesi aprofundeix i aporta solucions innovadores en el camp orientat a tractar el problema de la correspondència en imatges subaquàtiques. En aquests entorns, el que realment complica les tasques de processat és la falta de contorns ben definits per culpa d'imatges esborronades; un fet aquest que es deu fonamentalment a il·luminació deficient o a la manca d'uniformitat dels sistemes d'il·luminació artificials. Els objectius aconseguits en aquesta tesi es poden remarcar en dues grans direccions. Per millorar l'algorisme d'estimació de moviment es va proposar un nou mètode que introdueix paràmetres de textura per rebutjar falses correspondències entre parells d'imatges. Un seguit d'assaigs efectuats en imatges submarines reals han estat portats a terme per seleccionar les estratègies més adients. Amb la finalitat d'aconseguir resultats en temps real, es proposa una innovadora arquitectura VLSI per la implementació d'algunes parts de l'algorisme d'estimació de moviment amb alt cost computacional.
Resumo:
A dança é uma actividade de grande exigência atlética, que pode conduzir a um elevado número de lesões, particularmente na região do tornozelo, possivelmente devido à amplitude extrema do movimento articular de flexão plantar do mesmo, que os bailarinos, especialmente do sexo feminino possuem, para realizar a ponta e meia ponta tão características do ballet clássico (Kadel, 2006; Motta-Valencia, 2006; Russel, Kruse, Koutedakis, McEwan, Wyon, 2010). Estas posições de flexão plantar extrema produzem força excessiva na região posterior do tornozelo, o que muitas vezes pode resultar em conflito, dor e incapacidade, representando na maioria das vezes um desafio de diagnóstico. O síndrome do conflito posterior do tornozelo refere-se a um grupo de entidades patológicas que resultam da flexão plantar forçada do tornozelo, de forma repetitiva ou traumática, causando um conflito das estruturas ósseas e/ou de tecidos moles (Hamilton, Geppert, Thompson, 1996; Hamilton, 2008) . Os objectivos deste projecto são compreender os quais os factores de risco, mecânicos e funcionais que contribuem para a mecânica patológica da lesão descritos na literatura, e proceder a uma avaliação biomecânica do movimento de flexão plantar do tornozelo. Método. Realizar uma revisão sistemática de literatura dirigida á mecânica patológica do síndrome do conflito posterior do tornozelo em bailarinas e conduzir um estudo caso-controlo, cujo objectivo é avaliar, comparar e descrever o movimento da flexão plantar do tornozelo realizado ao efectuar os movimentos de ponta e meia-ponta, em bailarinas pré-profissionais com e sem lesão recorrente resultante do conflito posterior do tornozelo. Resultados. Não foram encontrados estudos relacionados especificamente com a mecânica patológica do tornozelo, no entanto vários estudos foram encontrados considerando as características clínicas e anatómicas assim como os procedimentos de tratamento, indicando que os principais factores de risco relacionados com a lesão se dividem em factores mecânicos e funcionais que quando combinados entre si e associados ao sobre-uso podem resultar no conflito posterior do tornozelo. Na avaliação do movimento foram observadas diferenças na actividade muscular entre os sujeitos com lesão e controlos, tendo sido possível a observação de um padrão na sequência de activação para um dos movimentos testados. Na oscilação postural e na rigidez do tornozelo foram também observadas diferenças entre os sujeitos bem como entre as posições realizadas. Conclusão. Concluiu-se que não sendo possível alterar a anatomia do bailarino, por vezes é possível intervir a nível funcional melhorando a capacidade técnica de forma obter um melhor desempenho e a actuar preventivamente em relação às lesões, uma vez que estas podem apresentar padrões cinéticos próprios, relacionados com a função muscular, a estabilidade postural e a rigidez articular.
Resumo:
The goals of the present study are: to determine the prevalence of dizziness or imbalance in a population of patients with cervical-spine pathology as compared to that in the general population; to determine correlations between cervical spinal pathology and symptoms of dizziness or imbalance.
Resumo:
The purpose of this study was to evaluate discrimination of angular velocity in individuals with normal vestibular function using a newly developed adaptive psychophysical measure. Vestibular psychophysical testing may complement existing clinical measures in diagnosing and treating patients with imbalance.
Resumo:
An instrument is described which carries three orthogonal geomagnetic field sensors on a standard meteorological balloon package, to sense rapid motion and position changes during ascent through the atmosphere. Because of the finite data bandwidth available over the UHF radio link, a burst sampling strategy is adopted. Bursts of 9s of measurements at 3.6Hz are interleaved with periods of slow data telemetry lasting 25s. Calculation of the variability in each channel is used to determine position changes, a method robust to periods of poor radio signals. During three balloon ascents, variability was found repeatedly at similar altitudes, simultaneously in each of three orthogonal sensors carried. This variability is attributed to atmospheric motions. It is found that the vertical sensor is least prone to stray motions, and that the use of two horizontal sensors provides no additional information over a single horizontal sensor
Resumo:
Many algorithms have been developed to achieve motion segmentation for video surveillance. The algorithms produce varying performances under the infinite amount of changing conditions. It has been recognised that individually these algorithms have useful properties. Fusing the statistical result of these algorithms is investigated, with robust motion segmentation in mind.
Resumo:
Magnetic sensors have been added to a standard weather balloon radiosonde package to detect motion in turbulent air. These measure the terrestrial magnetic field and return data over the standard uhf radio telemetry. Variability in the magnetic sensor data is caused by motion of the instrument package. A series of radiosonde ascents carrying these sensors has been made near a Doppler lidar measuring atmospheric properties. Lidar-retrieved quantities include vertical velocity (w) profile and its standard deviation (w). w determined over 1 h is compared with the radiosonde motion variability at the same heights. Vertical motion in the radiosonde is found to be robustly increased when w>0.75 m s−1 and is linearly proportional to w. ©2009 American Institute of Physics
Resumo:
In this work, compliant actuators are developed by coupling braided structures and polymer gels, able to produce work by controlled gel swelling in the presence of water. A number of aspects related to the engineering of gel actuators were studied, including gel selection, modelling and experimentation of constant force and constant displacement behaviour, and response time. The actuator was intended for use as vibration neutralizer: with this aim, generation of a force of 10 N in a time not exceeding a second was needed. Results were promising in terms of force generation, although response time was still longer than required. In addition, the easiest way to obtain the reversibility of the effect is still under discussion: possible routes for improvement are suggested and will be the object of future work.
Resumo:
A survey of the non-radial flows (NRFs) during nearly five years of interplanetary observations revealed the average non-radial speed of the solar wind flows to be �30 km/s, with approximately one-half of the large (>100 km/s) NRFs associated with ICMEs. Conversely, the average non-radial flow speed upstream of all ICMEs is �100 km/s, with just over one-third preceded by large NRFs. These upstream flow deflections are analysed in the context of the large-scale structure of the driving ICME. We chose 5 magnetic clouds with relatively uncomplicated upstream flow deflections. Using variance analysis it was possible to infer the local axis orientation, and to qualitatively estimate the point of interception of the spacecraft with the ICME. For all 5 events the observed upstream flows were in agreement with the point of interception predicted by variance analysis. Thus we conclude that the upstream flow deflections in these events are in accord with the current concept of the large scale structure of an ICME: a curved axial loop connected to the Sun, bounded by a curved (though not necessarily circular)cross section.