940 resultados para spine flexibility
Resumo:
Purpose: Because it is believed that bone may respond to exercise differently at different ages, we compared bone responses in immature and mature rats after 12 wk of treadmill running. Methods: Twenty-two immature (5-wk-old) and 21 mature (17-wk-old) female Sprague Dawley rats were randomized into a running (trained, N = 10 immature, 9 mature) or a control group (controls, N 12 immature, 12 mature) before sacrifice 12 wk later. Rats ran on a treadmill five times per week for 60-70 min at speeds up to 26 m.min(-1). Both at baseline and after intervention, we measured total body, lumbar spine, and proximal femoral bone mineral, as well as total body soft tissue composition using dual-energy x-ray absorptiometry (DXA) in vivo. After sacrificing the animals, we measured dynamic and static histomorphometry and three-point bending strength of the tibia. Results: Running training was associated with greater differences in tibial subperiosteal area, cortical cross-sectional area, peak load, stiffness, and moment of inertia in immature and mature rats (P < 0.05). The trained rats had greater periosteal bone formation rates (P < 0.01) than controls, but there was no difference in tibial trabecular bone histomorphometry. Similar running-related gains were seen in DXA lumbar spine area (P = 0.04) and bone mineral content (BMC; P = 0.03) at both ages. For total body bone area and BMC, the immature trained group increased significantly compared with controls (P < 0.05), whereas the mature trained group gained less than did controls (P < 0.01). Conclusion: In this in vivo model, where a similar physical training program was performed by immature and mature female rats, we demonstrated that both age groups were sensitive to loading and that bone strength gains appeared to result more from changes in bone geometry than from improved material properties.
Resumo:
Abnormal patterns of trunk muscle activity could affect the biomechanics of spinal movements and result in back pain. The present study aimed to examine electromyographic (EMG) activity of abdominal and back muscles as well as triaxial torque output during isometric axial rotation at different exertion levels in back pain patients and matched controls. Twelve back pain patients and 12 matched controls performed isometric right and left axial rotation at 100%, 70%, 50%, and 30% maximum voluntary contractions in a standing position. Surface EMG activity of rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus were recorded bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were measured. Results showed that there was a trend (P = 0.08) of higher flexion coupling torque during left axial rotation exertion in back pain patients. Higher activity for external oblique and lower activity for multifidus was shown during left axial rotation exertion in back pain group when compared to the control group. In right axial rotation, back pain patients exhibited lesser activity of rectus abdominis at higher levels of exertion when compared with matched controls. These findings demonstrated that decreased activation of one muscle may be compensated by overactivity in other muscles. The reduced levels of activity of the multifidus muscle during axial rotation exertion in back pain patients may indicate that spinal stability could be compromised. Future studies should consider these alternations in recruitment patterns in terms of spinal stability and internal loading. The findings also indicate the importance of training for coordination besides the strengthening of trunk muscles during rehabilitation process. (C) 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A technique based on laser light diffraction is shown to be successful in collecting on-line experimental data. Time series of floc size distributions (FSD) under different shear rates (G) and calcium additions were collected. The steady state mass mean diameter decreased with increasing shear rate G and increased when calcium additions exceeded 8 mg/l. A so-called population balance model (PBM) was used to describe the experimental data, This kind of model describes both aggregation and breakage through birth and death terms. A discretised PBM was used since analytical solutions of the integro-partial differential equations are non-existing. Despite the complexity of the model, only 2 parameters need to be estimated: the aggregation rate and the breakage rate. The model seems, however, to lack flexibility. Also, the description of the floc size distribution (FSD) in time is not accurate.
Resumo:
A major challenge faced by today's white clover breeder is how to manage resources within a breeding program. It is essential to utilise these resources with sufficient flexibility to build on past progress from conventional breeding strategies, but also take advantage of emerging opportunities from molecular breeding tools such as molecular markers and transformation. It is timely to review white clover breeding strategies. This background can then be used as a foundation for considering how to continue conventional plant improvement activities and complement them with molecular breeding opportunities. In this review, conventional white clover breeding strategies relevant to the Australian dryland target population environments are considered. Attention is given to: (i) availability of genetic variation, (ii) characterisation of germplasm collections, (iii) quantitative models for estimation of heritability, (iv) the role of multi-environment trials to accommodate genotype-by-environment interactions, (v) interdisciplinary research to understand adaptation to dryland environments, (vi) breeding and selection strategies, and (vii) cultivar structure. Current achievements in biotechnology with specific reference to white clover breeding in Australia are considered, and computer modelling of breeding programs is discussed as a useful integrative tool for the joint evaluation of conventional and molecular breeding strategies and optimisation of resource use in breeding programs. Four areas are identified as future research priorities: (i) capturing the potential genetic diversity among introduced accessions and ecotypes that are adapted to key constraints such as summer moisture stress and the use of molecular markers to assess the genetic diversity, (ii) understanding the underlying physiological/morphological root and shoot mechanisms involved in water use efficiency of white clover, with the objective of identifying appropriate selection criteria, (iii) estimation of quantitative genetic parameters of important morphological/physiological attributes to enable prediction of response to selection in target environments, and (iv) modelling white clover breeding strategies to evaluate the opportunities for integration of molecular breeding strategies with conventional breeding programs.
Resumo:
The haploid NK model developed by Kauffman can be extended to diploid genomes and to incorporate gene-by-environment interaction effects in combination with epistasis. To provide the flexibility to include a wide range of forms of gene-by-environment interactions, a target population of environment types (TPE) is defined. The TPE consists of a set of E different environment types, each with their own frequency of occurrence. Each environment type conditions a different NK gene network structure or series of gene effects for a given network structure, providing the framework for defining gene-by-environment interactions. Thus, different NK models can be partially or completely nested within the E environment types of a TPE, giving rise to the E(NK) model for a biological system. With this model it is possible to examine how populations of genotypes evolve in context with properties of the environment that influence the contributions of genes to the fitness values of genotypes. We are using the E(NK) model to investigate how both epistasis and gene-by-environment interactions influence the genetic improvement of quantitative traits by plant breeding strategies applied to agricultural systems. © 2002 Wiley Periodicals, Inc.
Resumo:
Recent studies have revealed striking differences in pyramidal cell structure among cortical regions involved in the processing of different functional modalities. For example, cells involved in visual processing show systematic variation, increasing in morphological complexity with rostral progression from V1 through extrastriate areas. Differences have also been identified between pyramidal cells in somatosensory, motor and prefrontal cortex, but the extent to which the pyramidal cell phenotype may vary between these functionally related cortical regions remains unknown. In the present study we investigated the structure of layer III pyramidal cells in somatosensory and motor areas 3b, 4, 5, 6 and 7b of the macaque monkey. Cells were intracellularly injected in fixed, flat-mounted cortical slices and analysed for morphometric parameters. The size of the basal dendritic arbours, the number of their branches and their spine density were found to vary systematically between areas. Namely, we found a trend for increasing complexity in dendritic arbour structure through areas 3b, 5 and 7b. A similar trend occurred through areas 4 and 6. The differences in arbour structure may determine the number of inputs received by neurons and may thus be an important factor in determining function at the cellular and systems level.
Resumo:
Free independent travelers require flexible, reactive service delivery due to their regularly changing location and activities and the lack of a wired Internet connection. A ubiquitous travel service delivery system that is able to dynamically deliver services in response to relevant events, such as changing location, availability of new last-minute specials, work opportunities, and safety issues can provide added value while retaining the flexibility that is so important to independent travelers. This article describes such a system. An engineering design research approach has been adopted to design the system. Issues addressed include traveler and service states and events, contexts, situations, and situation-action rules. An architecture is proposed that is based on distributed, cooperating software agents and mobile data technologies. The role of these agents is to continuously monitor situations that are occurring in the physical and virtual service spaces and to take the required action for any situations that are relevant to the traveler.
Resumo:
Acanthodian remains occur in micaceous siltstone lenses (presumed to have been deposited during a marine incursion) in the Cuche Formation (?Frasnian) of northeast Colombia. The acanthodians are represented by patches of scales from climatiidid Nostolepis sp. cf. N. gatijensis and a fin spine and scales from a new diplacanthid. Type material of N. gaujensis is from the Frasnian Sventoji regional stage in the Baltic, and Nostolepis sp. cf. N. gaujensis has been recorded in the Frasnian of Iran, as well as from Colombia. The new diplacanthid taxon shows affinity to Baltic and Antarctic diplacanthids. The fauna thus shows possible links to both Gondwanan and Euramerican acanthodian assemblages. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Dissociated remains of the acanthodian Poracanthodes punctatus are described from Upper Silurian (Pridoli) limestones of the Roberts Mountains Formation at Pete Hanson Creek, Eureka County, Nevada. The vertebrate microremains in sample residues comprise scales, a dentigerous jaw bone fragment, and a fin spine fragment assigned to P. punctatus, plus one possible acanthothoracid placoderm scale. Some macroremains from the same locality are also assigned to P. punctatus. This taxon has been nominated as, a zone fossil for the Silurian vertebrate biozonal scheme, and its presence has been recorded throughout the circum-Arctic region. Identification of the taxon in Nevada extends its known geographic range.
Resumo:
Most external assessments of cervical range of motion assess the upper and lower cervical regions simultaneously. This study investigated the within and between days reliability of the clinical method used to bias this movement to the upper cervical region, namely measuring rotation of the head and neck in a position of full cervical flexion. Measurements were made using the Fastrak measurement system and were conducted by one operator. Results indicated high levels of within and between days repeatability (range of ICC2,1 values: 0.85-0.95). The ranges of axial rotation to right and left, measured with the neck positioned in full flexion, were approximately 56% and 50%, respectively of total cervical rotation, which relates well to the proportional division of rotation in the upper and lower cervical regions. These results suggest that this method of measuring rotation would be appropriate for use in subject studies where movement dysfunction is present in the upper cervical region, such as those with cervicogenic headache. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Background and Purpose. This study evaluated an electromyographic technique for the measurement of muscle activity of the deep cervical flexor (DCF) muscles. Electromyographic signals were detected from the DCF, sternocleidomastoid (SCM), and anterior scalene (AS) muscles during performance of the craniocervical flexion (CCF) test, which involves performing 5 stages of increasing craniocervical flexion range of motion-the anatomical action of the DCF muscles. Subjects. Ten volunteers without known pathology or impairment participated in this study. Methods. Root-mean-square (RMS) values were calculated for the DCF, SCM, and AS muscles during performance of the CCF test. Myoelectric signals were recorded from the DCF muscles using bipolar electrodes placed over the posterior oropharyngeal wall. Reliability estimates of normalized RMS values were obtained by evaluating intraclass correlation coefficients and the normalized standard error of the mean (SEM). Results. A linear relationship was evident between the amplitude of DCF muscle activity and the incremental stages of the CCF test (F=239.04, df=36, P<.0001). Normalized SEMs in the range 6.7% to 10.3% were obtained for the normalized RMS values for the DCF muscles, providing evidence of reliability for these variables. Discussion and Conclusion. This approach for obtaining a direct measure of the DCF muscles, which differs from those previously used, may be useful for the examination of these muscles in future electromyographic applications.
Resumo:
Objective: This study compares myoelectric manifestations of fatigue of the sternocleidomastoid (SCM) and anterior scalene (AS) muscles between 10 chronic neck pain subjects and 10 normal matched controls. Methods: Surface electromyography (sEMG) signals were recorded from the sternal bead of SCM and AS muscles bilaterally during submaximal isometric cervical flexion contractions at 25 and 50% of the maximum voluntary contraction (MVC). The mean frequency, average rectified value and conduction velocity of the sEMG signal were calculated to quantify myoelectric manifestations of muscle fatigue. Results: For both the SCM and AS muscles, the Mann-Whitney U test indicated that the initial value and slope of the mean frequency in neck pain patients were greater than in healthy subjects (P < 0.05). This was significant both at 25 and 50% of MVC. Conclusions: These results suggest: (a) a predominance of type-II fibres in the neck pain patients and/or (b) greater fatigability of the superficial cervical flexors in neck pain patients. These results are in agreement with previous muscle biopsy studies in subjects with neck pain, which identified transformation of slow-twitch type-I fibres to fast-twitch type-IIB fibres, as well as the clinical observation of reduced endurance in the cervical flexors in neck pain patients. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The power required to operate large mills is typically 5-10 MW. Hence, optimisation of power consumption will have a significant impact on overall economic performance and environmental impact. Power draw modelling results using the discrete element code PFC3D have been compared with results derived from the widely used empirical Model of Morrell. This is achieved by calculating the power draw for a range of operating conditions for constant mill size and fill factor using two modelling approaches. fThe discrete element modelling results show that, apart from density, selection of the appropriate material damping ratio is critical for the accuracy of modelling of the mill power draw. The relative insensitivity of the power draw to the material stiffness allows selection of moderate stiffness values, which result in acceptable computation time. The results obtained confirm that modelling of the power draw for a vertical slice of the mill, of thickness 20% of the mill length, is a reliable substitute for modelling the full mill. The power draw predictions from PFC3D show good agreement with those obtained using the empirical model. Due to its inherent flexibility, power draw modelling using PFC3D appears to be a viable and attractive alternative to empirical models where necessary code and computer power are available.
Resumo:
Detection of a circumferential crack in a hollow section beam is investigated using coupled response measurements. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. This matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The suitability of the mode coupling methodology is first demonstrated analytically. Laboratory test results are then presented for circular hollow section beams with artificially generated cracks of varying severity. It is shown that this method has the potential as a damage detection tool for mechanical structures. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This review summarizes the development of exclusion chromatography, also termed gel filtration, molecular-sieve chromatography and gel permeation chromatography, for the quantitative characterization of solutes and solute interactions. As well as affording a means of determining molecular mass and molecular mass distribution, the technique offers a convenient way of characterizing solute selfassociation and solute-ligand interactions in terms of reaction stoichiometry and equilibrium constant. The availability of molecular-sieve media with different selective porosities ensures that very little restriction is imposed on the size of solute amenable to study. Furthermore, access to a diverse array of assay procedures for monitoring the column eluate endows analytical exclusion chromatography with far greater flexibility than other techniques from the viewpoint of solute concentration range that can be examined. In addition to its widely recognized prowess as a means of solute separation and purification, exclusion chromatography thus also possesses considerable potential for investigating the functional roles of the purified solutes. (C) 2003 Elsevier Science B.V. All rights reserved.