946 resultados para speech features


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study deals with the salient features of the north Indian ocean associated with the summer monsoon. The focus is given on the Arabian sea mini warm pool, which is a part of the Indian ocean. It primarily study the certain aspects of the atmosphere and ocean variability in the north Indian ocean. The attempt were made to understand various aspects of time –scale variability of major features occurring in the Indian summer monsoon. The result from the thesis can be utilized as an input for model studies for prediction of monsoon, understanding ocean dynamics, radar tracking and ranging etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study deals with the salient features of the north Indian ocean associated with the summer monsoon. The focus is given on the Arabian sea mini warm pool, which is a part of the Indian ocean. It primarily study the certain aspects of the atmosphere and ocean variability in the north Indian ocean. The attempt were made to understand various aspects of time –scale variability of major features occurring in the Indian summer monsoon. The result from the thesis can be utilized as an input for model studies for prediction of monsoon, understanding ocean dynamics, radar tracking and ranging etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser induced plasma emission spectra from highT c superconducting samples of YBa2Cu3O7 and GdBa2Cu3O7 obtained with 1.06µm radiation from a Q switched Nd:YAG laser beam has been analysed. The results clearly show the presence of diatomic oxides in addition to ionized species of the constituent metals in the plasma thus produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the ring

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis entitled southern hemispheric features and their Teleconnection with indian summer monsoon.Southern hemisphere is entirely distinct from the northern hemisphere in many aspects, which is well reflected in atmospheric and oceanic properties.The thesis consists of eight chapters, in which the first chapter contains an overview of southern hemisphere. In this chapter, variability in southern hemisphere is described along with Indian summer monsoon and its teleconnection. The different types of data sets used and various methodologies adopted in the present thesis were described in Chapter 2. The period of climate shift and the magnitude of anomalies after the climate shift, which extended from troposphere to stratopause level, were investigated in detail and presented in chapter 3. Chapter 4 depicts the recent trend and variability in southern stratosphere. The higher order variability during various months and the frequency of extremity is included in this chapter.Climatology of divergence and convergence after the documented shift is reported in chapter 5.Southern extratropical connection to Indian summer monsoon through the modulation of SAM is presented in Chapter 6.Chapter 7 deals with the modulation of SAM‐Monsoon link through North Atlantic Oscillation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study is to elucidate the hydrological conditions of the shelf waters along the southern half or the west coast of India and their relation to the sooplankton bionase and pelagic fish resources. Data from six hydrography-plankton sections worked during the 1972-75 period of cape camerin. Quilon. cochin. Kasaragod. Karwar and kotnagiri formed the basis of the present study.Stations were fixed along the transects 10 nautical miles apart. Starting with the first station at around 15 metre depth and were usually occupied 5 to 8 times in an year at an interval of about 6 weeks. Data relating to oil sardines and macherel fisheries were availed from published information relating to the period mainly of the Central Marine fisheries Research Institute. The range of different parameters namely temperature. salinity. density and dissolved oxygen at different depths and their sloping features against the coast are discussed. Three seasons. namely south-west monsoon (summer monsoon). north-east monsoon (winter monsoon) and hot weather season are designated and data of the core months of each of these seasons considered in the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the potential use of zerocrossing information for speech sample estimation. It provides 21 new method tn) estimate speech samples using composite zerocrossings. A simple linear interpolation technique is developed for this purpose. By using this method the A/D converter can be avoided in a speech coder. The newly proposed zerocrossing sampling theory is supported with results of computer simulations using real speech data. The thesis also presents two methods for voiced/ unvoiced classification. One of these methods is based on a distance measure which is a function of short time zerocrossing rate and short time energy of the signal. The other one is based on the attractor dimension and entropy of the signal. Among these two methods the first one is simple and reguires only very few computations compared to the other. This method is used imtea later chapter to design an enhanced Adaptive Transform Coder. The later part of the thesis addresses a few problems in Adaptive Transform Coding and presents an improved ATC. Transform coefficient with maximum amplitude is considered as ‘side information’. This. enables more accurate tfiiz assignment enui step—size computation. A new bit reassignment scheme is also introduced in this work. Finally, sum ATC which applies switching between luiscrete Cosine Transform and Discrete Walsh-Hadamard Transform for voiced and unvoiced speech segments respectively is presented. Simulation results are provided to show the improved performance of the coder

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biometrics deals with the physiological and behavioral characteristics of an individual to establish identity. Fingerprint based authentication is the most advanced biometric authentication technology. The minutiae based fingerprint identification method offer reasonable identification rate. The feature minutiae map consists of about 70-100 minutia points and matching accuracy is dropping down while the size of database is growing up. Hence it is inevitable to make the size of the fingerprint feature code to be as smaller as possible so that identification may be much easier. In this research, a novel global singularity based fingerprint representation is proposed. Fingerprint baseline, which is the line between distal and intermediate phalangeal joint line in the fingerprint, is taken as the reference line. A polygon is formed with the singularities and the fingerprint baseline. The feature vectors are the polygonal angle, sides, area, type and the ridge counts in between the singularities. 100% recognition rate is achieved in this method. The method is compared with the conventional minutiae based recognition method in terms of computation time, receiver operator characteristics (ROC) and the feature vector length. Speech is a behavioural biometric modality and can be used for identification of a speaker. In this work, MFCC of text dependant speeches are computed and clustered using k-means algorithm. A backpropagation based Artificial Neural Network is trained to identify the clustered speech code. The performance of the neural network classifier is compared with the VQ based Euclidean minimum classifier. Biometric systems that use a single modality are usually affected by problems like noisy sensor data, non-universality and/or lack of distinctiveness of the biometric trait, unacceptable error rates, and spoof attacks. Multifinger feature level fusion based fingerprint recognition is developed and the performances are measured in terms of the ROC curve. Score level fusion of fingerprint and speech based recognition system is done and 100% accuracy is achieved for a considerable range of matching threshold

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite remote sensing is being effectively used in monitoring the ocean surface and its overlying atmosphere. Technical growth in the field of satellite sensors has made satellite measurement an inevitable part of oceanographic and atmospheric research. Among the ocean observing sensors, ocean colour sensors make use of visible band of electromagnetic spectrum (shorter wavelength). The use of shorter wavelength ensures fine spatial resolution of these parameters to depict oceanographic and atmospheric characteristics of any region having significant spaio-temporal variability. Off the southwest coast of India is such an area showing very significant spatio-temporal oceanographic and atmospheric variability due to the seasonally reversing surface winds and currents. Consequently, the region is enriched with features like upwelling, sinking, eddies, fronts, etc. Among them, upwelling brings nutrient-rich waters from subsurface layers to surface layers. During this process primary production enhances, which is measured in ocean colour sensors as high values of Chl a. Vertical attenuation depth of incident solar radiation (Kd) and Aerosol Optical Depth (AOD) are another two parameters provided by ocean colour sensors. Kd is also susceptible to undergo significant seasonal variability due to the changes in the content of Chl a in the water column. Moreover, Kd is affected by sediment transport in the upper layers as the region experiences land drainage resulting from copious rainfall. The wide range of variability of wind speed and direction may also influence the aerosol source / transport and consequently AOD. The present doctoral thesis concentrates on the utility of Chl a, Kd and AODprovided by satellite ocean colour sensors to understand oceanographic and atmospheric variability off the southwest coast of India. The thesis is divided into six Chapters with further subdivisions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation for Speaker recognition work is presented in the first part of the thesis. An exhaustive survey of past work in this field is also presented. A low cost system not including complex computation has been chosen for implementation. Towards achieving this a PC based system is designed and developed. A front end analog to digital convertor (12 bit) is built and interfaced to a PC. Software to control the ADC and to perform various analytical functions including feature vector evaluation is developed. It is shown that a fixed set of phrases incorporating evenly balanced phonemes is aptly suited for the speaker recognition work at hand. A set of phrases are chosen for recognition. Two new methods are adopted for the feature evaluation. Some new measurements involving a symmetry check method for pitch period detection and ACE‘ are used as featured. Arguments are provided to show the need for a new model for speech production. Starting from heuristic, a knowledge based (KB) speech production model is presented. In this model, a KB provides impulses to a voice producing mechanism and constant correction is applied via a feedback path. It is this correction that differs from speaker to speaker. Methods of defining measurable parameters for use as features are described. Algorithms for speaker recognition are developed and implemented. Two methods are presented. The first is based on the model postulated. Here the entropy on the utterance of a phoneme is evaluated. The transitions of voiced regions are used as speaker dependent features. The second method presented uses features found in other works, but evaluated differently. A knock—out scheme is used to provide the weightage values for the selection of features. Results of implementation are presented which show on an average of 80% recognition. It is also shown that if there are long gaps between sessions, the performance deteriorates and is speaker dependent. Cross recognition percentages are also presented and this in the worst case rises to 30% while the best case is 0%. Suggestions for further work are given in the concluding chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated the potential use of Linear Predictive Coding in speech communication applications. A Modified Block Adaptive Predictive Coder is developed, which reduces the computational burden and complexity without sacrificing the speech quality, as compared to the conventional adaptive predictive coding (APC) system. For this, changes in the evaluation methods have been evolved. This method is as different from the usual APC system in that the difference between the true and the predicted value is not transmitted. This allows the replacement of the high order predictor in the transmitter section of a predictive coding system, by a simple delay unit, which makes the transmitter quite simple. Also, the block length used in the processing of the speech signal is adjusted relative to the pitch period of the signal being processed rather than choosing a constant length as hitherto done by other researchers. The efficiency of the newly proposed coder has been supported with results of computer simulation using real speech data. Three methods for voiced/unvoiced/silent/transition classification have been presented. The first one is based on energy, zerocrossing rate and the periodicity of the waveform. The second method uses normalised correlation coefficient as the main parameter, while the third method utilizes a pitch-dependent correlation factor. The third algorithm which gives the minimum error probability has been chosen in a later chapter to design the modified coder The thesis also presents a comparazive study beh-cm the autocorrelation and the covariance methods used in the evaluaiicn of the predictor parameters. It has been proved that the azztocorrelation method is superior to the covariance method with respect to the filter stabf-it)‘ and also in an SNR sense, though the increase in gain is only small. The Modified Block Adaptive Coder applies a switching from pitch precitzion to spectrum prediction when the speech segment changes from a voiced or transition region to an unvoiced region. The experiments cont;-:ted in coding, transmission and simulation, used speech samples from .\£=_‘ajr2_1a:r1 and English phrases. Proposal for a speaker reecgnifion syste: and a phoneme identification system has also been outlized towards the end of the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Any automatically measurable, robust and distinctive physical characteristic or personal trait that can be used to identify an individual or verify the claimed identity of an individual, referred to as biometrics, has gained significant interest in the wake of heightened concerns about security and rapid advancements in networking, communication and mobility. Multimodal biometrics is expected to be ultra-secure and reliable, due to the presence of multiple and independent—verification clues. In this study, a multimodal biometric system utilising audio and facial signatures has been implemented and error analysis has been carried out. A total of one thousand face images and 250 sound tracks of 50 users are used for training the proposed system. To account for the attempts of the unregistered signatures data of 25 new users are tested. The short term spectral features were extracted from the sound data and Vector Quantization was done using K-means algorithm. Face images are identified based on Eigen face approach using Principal Component Analysis. The success rate of multimodal system using speech and face is higher when compared to individual unimodal recognition systems