989 resultados para soil physical fractions
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Re-establishing deforested ecosystems to pre-settlement vegetation is difficult, especially in ecotonal areas, due to lack of knowledge about the original physiognomy. Our objective was to use a soils database that included chemical and physical parameters to distinguish soil samples of forest from those of savannah sites in a municipality located in the southeastern Brazil region. Discriminant analysis (DA) was used to determine the original biome vegetation (forest or savannah) in ecotone regions that have been converted to pasture and are degraded. First, soils of pristine forest and savannah sites were tested, resulting in a reference database to compare to the degraded soils. Although the data presented, in general had a high level of similarity among the two biomes, some differences occurred that were sufficient for DA to distinguish the sites and classify the soil samples taken from grassy areas into forest or savannah. The soils from pastured areas presented quality worse than the soils of the pristine areas. Through DA analysis we observed that, from seven soil samples collected from grassy areas, five were most likely originally forest biome and two were savannah, ratified by a complementary cluster analysis carried out with the database of these samples. The model here proposed is pioneer. However, the users should keep in mind that using this technology, i.e., establishing a regional-level database of soil features, using soil samples collected both from pristine and degraded areas is critical for success of the project, especially because of the ecological and regional particularities of each biome.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Methane (CH4) emission from agricultural soils increases dramatically as a result of deleterious effect of soil disturbance and nitrogen fertilization on methanotrophic organisms; however, few studies have attempted to evaluate the potential of long-term conservation management systems to mitigate CH4 emissions in tropical and subtropical soils. This study aimed to evaluate the long-term effect (>19 years) of no-till grass- and legume-based cropping systems on annual soil CH4 fluxes in a formerly degraded Acrisol in Southern Brazil. Air sampling was carried out using static chambers and CH4 analysis by gas chromatography. Analysis of historical data set of the experiment evidenced a remarkable effect of high C- and N-input cropping systems on the improvement of biological, chemical, and physical characteristics of this no-tilled soil. Soil CH4 fluxes, which represent a net balance between consumption (-) and production (+) of CH4 in soil, varied from -40 +/- 2 to +62 +/- 78 mu g C m(-2) h(-1). Mean weighted contents of ammonium (NH4+-N) and dissolved organic carbon (DOC) in soil had a positive relationship with accumulated soil CH4 fluxes in the post-management period (r(2) = 0.95, p = 0.05), suggesting an additive effect of these nutrients in suppressing CH4 oxidation and stimulating methanogenesis, respectively, in legume-based cropping systems with high biomass input. Annual CH4 fluxes ranged from -50 +/- 610 to +994 +/- 105 g C ha(-1), which were inversely related to annual biomass-C input (r(2) = 0.99, p = 0.003), with the exception of the cropping system containing pigeon pea, a summer legume that had the highest biologically fixed N input (>300 kg ha(-1) yr(-1)). Our results evidenced a small effect of conservation management systems on decreasing CH4 emissions from soil, despite their significant effect restoring soil quality. We hypothesized that soil CH4 uptake strength has been off-set by an injurious effect of biologically fixed N in legume-based cropping systems on soil methanotrophic microbiota, and by the methanogenesis increase as a result of the O-2 depletion in niches of high biological activity in the surface layer of the no-tillage soil. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The use of cover crops affects the support capacity of soil and least limiting water range to crop growth. The objective of this study was to quantify preconsolidation pressure (sigma(p)), compression index (CI) and least limiting water range (LLWR) of a reclaimed coal mining soil under different cover crops, in Candiota, RS, Brazil. In the experiment, with randomized blocks design and four replicates, the following cover crops (treatments) were evaluated: Hemarthria altissima (Poir.) Stapf & C.E. Hubbard, treatment 1 (T1), Paspalum notatum Flugge, treatment 4 (T4), Cynodon dactilon (L) Pers., treatment 5 (T5), control Brachiaria brizantha (Hochst.) Stapf, treatment 7 (T7) and without cover crop treatment 8 (reference treatment, T8). Soil compression and least limiting water range were evaluated with undisturbed samples at a depth of 0.00-0.05 m. In order to evaluate parameters of soil compressibility, the soil samples were saturated with water and subjected to -10 kPa matric potential and then submitted to a uniaxial compression test under the following pressures: 25, 50, 100, 200, 400, 800 and 1600 kPa. Cover crops decreased the preconsolidation pressure of constructed soils after coal mining and the greatest soil reclamation was obtained with the H. altissima cover crop, where the lowest degree of soil compactness and soil load capacity were observed. Soils cultivated under H. altissima or B. brizantha presented the highest least limiting water range and these two cover crops generated similar soil critical bulk density obtained by least limiting water range and soil load support capacity. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The chemical and physical properties of a Brazilian heavy oil submitted to plasma treatment were investigated by H-1 low-and high-field nuclear magnetic resonance (NMR) combined to the characterization of rheological properties, thermogravimetry and measurement of basic sediments and water (BSW) content. The crude oil was treated in a dielectric barrier discharge plasma reactor, using natural gas, CO2 or H-2 as working gas. The results indicated a large drop in the water content of the plasma-treated samples as compared to the crude oil, giving rise to a reduction in the viscosity. No significant chemical change was produced in the oil portion itself, as observed by H-1 NMR. The water contents determined by H-1 low-field NMR analyses agreed well with those obtained by BSW, indicating the low-field NMR methods as a useful tool for following the effects of plasma treatments on heavy oils, allowing the separation of the effects caused on the water and oil fractions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in Sao Carlos (Fazenda Canchim), in Sao Paulo State, Brazil. Experimental plots of 33 m(2) were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e. g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
This study aims to compare and validate two soil-vegetation-atmosphere-transfer (SVAT) schemes: TERRA-ML and the Community Land Model (CLM). Both SVAT schemes are run in standalone mode (decoupled from an atmospheric model) and forced with meteorological in-situ measurements obtained at several tropical African sites. Model performance is quantified by comparing simulated sensible and latent heat fluxes with eddy-covariance measurements. Our analysis indicates that the Community Land Model corresponds more closely to the micrometeorological observations, reflecting the advantages of the higher model complexity and physical realism. Deficiencies in TERRA-ML are addressed and its performance is improved: (1) adjusting input data (root depth) to region-specific values (tropical evergreen forest) resolves dry-season underestimation of evapotranspiration; (2) adjusting the leaf area index and albedo (depending on hard-coded model constants) resolves overestimations of both latent and sensible heat fluxes; and (3) an unrealistic flux partitioning caused by overestimated superficial water contents is reduced by adjusting the hydraulic conductivity parameterization. CLM is by default more versatile in its global application on different vegetation types and climates. On the other hand, with its lower degree of complexity, TERRA-ML is much less computationally demanding, which leads to faster calculation times in a coupled climate simulation.
Resumo:
Using a network representation for real soil samples and mathematical models for microbial spread, we show that the structural heterogeneity of the soil habitat may have a very significant influence on the size of microbial invasions of the soil pore space. In particular, neglecting the soil structural heterogeneity may lead to a substantial underestimation of microbial invasion. Such effects are explained in terms of a crucial interplay between heterogeneity in microbial spread and heterogeneity in the topology of soil networks. The main influence of network topology on invasion is linked to the existence of long channels in soil networks that may act as bridges for transmission of microorganisms between distant parts of soil.
Resumo:
CHARACTERIZATION OF REGOSOLS IN THE SEMIARID REGION OF PERNAMBUCO, BRAZIL Studies on soil characterization in unexplored regions, besides the generation of data banks for the soil classes of the country, also produce scientific information about soil properties, important for the development of good management practices and sustainable land use. One of the main soil classes in the semiarid region of Pernambuco State, the Regosols, cover about 27 % of the state area, and are used mainly for family agriculture. Due to different geological and climatic aspects Regosols with different chemical, physical and mineralogical properties are found in Pernambuco, which were characterized for the semiarid region of the State. Five Regosol profiles were selected in different regions of the State (P1=Sao Caetano; P2=Lagoa do Ouro; P3=Caetes; P4=Sao Joao; P5=Parnamirim). The soils were morphologically characterized and samples collected from all horizons and the bedrock. Routine physical and chemical analyses were carried out for soil classification of all samples and mineralogical analyses of the coarse fractions (gravel and sand) by optical microscopy and of the silt and clay fractions by X ray diffraction (XRD), as well as petrographic analyses of the rock samples. The results showed similarities between the soils, with a low degree of pedogenetic development, varying from medium to very deep, with the horizon sequence A-AC-C-Cr and a sandy to sandy loam texture. In the deeper layers of two profiles (P1 and P5), a solodic character was observed. Organic matter and available phosphorus content were low in all studied soils. Despite the low levels of exchangeable cations, all soil profiles showed high base saturation. The mineralogical composition of gravel, sand and silt fractions consisted, essentially, of quartz, followed by feldspars and mica, supporting the results of the petrographic analysis of the bedrock. Kaolinite was the main clay mineral in all studied profiles and horizons, indicating an important monosialitization process in autochthonous soils of a typical semiarid region. In soil profile P2, at a lower landscape position, smectite minerals were observed, with mixing phases of montmorillonite, beidelite or nontronite, indentified by the Greene-Kelly test in the DRX analysis.
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
The study of the hydro-physical behavior in soils using toposequences is of great importance for better understanding the soil, water and vegetation relationships. This study aims to assess the hydro-physical and morphological characterization of soil from a toposequence in Galia, state of São Paulo, Brazil). The plot covers an area of 10.24 ha (320 × 320 m), located in a semi-deciduous seasonal forest. Based on ultra-detailed soil and topographic maps of the area, a representative transect from the soil in the plot was chosen. Five profiles were opened for the morphological description of the soil horizons, and hydro-physical and micromorphological analyses were performed to characterize the soil. Arenic Haplustult, Arenic Haplustalf and Aquertic Haplustalf were the soil types observed in the plot. The superficial horizons had lower density and greater hydraulic conductivity, porosity and water retention in lower tensions than the deeper horizons. In the sub-superficial horizons, greater water retention at higher tensions and lower hydraulic conductivity were observed, due to structure type and greater clay content. The differences observed in the water retention curves between the sandy E and the clay B horizons were mainly due to the size distribution, shape and type of soil pores.
Resumo:
This study is concerned with speciation and fractionation of the rare earth elements (REE) and calcium (Ca) in aqueous solutions. The aim is to investigate the chemical states and physical sizes in which these elements can be present. The REE (including neodymium) and Ca have contrasting geochemical behavior in aqueous solutions. Ca is a major dissolved element, while the REE are trace components and highly reactive with aquatic particles. The major interests of the five papers included in this thesis are the following: · Papers I and V deal with the behavior of neodymium (Nd) and its isotopes in the Kalix River and some marine waters. · The diffusive gradients in thin-films (DGT) method is developed for measuring Ca and Mg in Paper II. · Paper III presents a speciation and fractionation study of Ca in the Kalix and Amazonian rivers. · The rare earth elements and their carrier phases are investigated in the Kalix river in Paper IV. For most elements a detailed study of speciation and fractionation can not be performed using only one method. This is due to the overall heterogeneity of the material, considering both size and chemical composition, which is present in aquatic solutions. During this project the aquatic geochemistry of the REE and Ca has been studied using mainly three methods; cross-flow filtration (CFF), field-flow fractionation (FFF) and diffusive gradients in thin-films (DGT). Field work has to a large part been conducted in the Kalix River, in northern Sweden, which is one of the last pristine river systems in Europe. Some field work has also been conducted in the Baltic Sea and the Arctic Ocean. Results from Amazonian rivers are also presented. These are the main conclusions from this work: The DGT technique works equally well for measuring Ca and Mg in natural waters as previously reported for trace metal. A significant colloidal phase for Ca could be detected in the Kalix River and in different Amazonian rivers. This was concluded independently using both CFF and FFF. Variations in REE signatures in the Kalix River suggests two different pathways for the REE during weathering and release form soil profiles and transport in the river. No significant variation in Nd-isotopic composition could be detected in the Kalix River although concentrations varied by a factor of ~10. This suggests that there is one major source for Nd in the river although different pathways for the REE may exist. A study of Nd in the Kalix River, the Baltic Sea and the Arctic Ocean showed that the isotopic compositions in the diffusible fractions were similar to water samples. However, the relative amount of diffusible Nd increased with salinity, probably reflecting the lower concentration of colloidal and particulate material in marine waters.