933 resultados para smear layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive restorations have increasingly been used in dentistry, and the adhesive system application technique may determine the success of the restorative procedure. The aim of this study was to evaluate the influence of the application technique of two adhesive systems (Clearfil SE Bond and Adper Scotchbond MultiPurpose) on the bond strength and adhesive layer of composite resin restorations. Eight human third molars were selected and prepared with Class I occlusal cavities. The teeth were restored with composite using various application techniques for both adhesives, according to the following groups (n = 10): group 1 (control), systems were applied and adhesive was immediately light activated for 20 seconds without removing excesses; group 2, excess adhesive was removed with a gentle jet of air for 5 seconds; group 3, excess was removed with a dry microbrush-type device; and group 4, a gentle jet of air was applied after the microbrush and then light activation was performed. After this, the teeth were submitted to microtensile testing. For the two systems tested, no statistical differences were observed between groups 1 and 2. Groups 3 and 4 presented higher bond strength values compared with the other studied groups, allowing the conclusion that excess adhesive removal with a dry micro-brush could improve bond strength in composite restorations. Predominance of adhesive fracture and thicker adhesive layer were observed via scanning electron microscopy (SEM) in groups 1 and 2. For groups 3 and 4, a mixed failure pattern and thinner adhesive layer were verified. Clinicians should be aware that excess adhesive may negatively affect bond strength, whereas a thin, uniform adhesive layer appears to be favorable. (Quintessence Int 2013;44:9-15)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents electrochemical experiments on natural pyrite that combine potentiostatic and voltammetric techniques. X-ray microanalysis is used as an auxiliary technique. The layer growth on pyrite surface is conducted in a wide range of pH and potential range: 3.4 <= pH <= 5.9 with E = 0.80 V (versus SHE), and 0.80 V <= E <= 1.00 V with pH 4.5 (versus SHE) in acetic acid-acetate buffer. This work is unique for two reasons: (1) phenomenological model about layer growth is applied and mathematical-physic consistence is verified and (2) Meyer's hypotheses of chemical mechanism are used to explain kinetic parameters of the phenomenological model. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in "cold-wall" reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In uncemented Ti6Al4V hip implants, the bone-stem interface is subjected to cyclic loading motion driven by the daily activities of the patients, which may lead to the complete failure of the implant in the long term. It may also compromise the proliferation and differentiation processes of osteoblastic cells (bone-forming cells). The main objective of this work is to approach for the first time the role of these organic materials on the bio-tribocorrosion mechanisms of cultured Ti6Al4V alloys. The colonized materials with MG63 osteoblastic-like cells were characterized through cell viability/proliferation and enzymatic activity. Tribocorrosion tests were performed under a reciprocating sliding configuration and low contact pressure. Electrochemical techniques were used to measure the corrosion kinetics of the system, under free potential conditions. All tests were performed at a controlled atmosphere. The morphology and topography of the wear scar were evaluated. The results showed that the presence of an osteoblastic cell layer on the implant surface significantly influences the tribocorrosion behavior of Ti6Al4V alloy. It was concluded that the cellular material was able to form an extra protective layer that inhibits further wear degradation of the alloy and decreases its corrosion tendency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)