843 resultados para shape displays
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"October 1978."
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
We demonstrate a compact tunable filter based on a novel microfluidic single beam Mach-Zehnder interferometer. The optical path difference occurs during propagation across a fluid-air interface ( meniscus), the inherent mobility of which provides tunability. Optical losses are minimized by optimizing the meniscus shape through surface treatment. Optical spectra are compared to a 3D beam propagation method simulations and good agreement is found. Tunability, low insertion loss and strength of the resonance are well reproduced. The device performance displays a resonance depth of - 28 dB and insertion loss maintained at - 4 dB. (C) 2004 Optical Society of America.
Resumo:
We reviewed the use of advanced display technologies for monitoring in anesthesia. Researchers are investigating displays that integrate information and that, in some cases, also deliver the results continuously to the anesthesiologist. Integrated visual displays reveal higher-order properties of patient state and speed in responding to events, but their benefits under an intensely timeshared load is unknown. Head-mounted displays seem to shorten the time to respond to changes, but their impact on peripheral awareness and attention is unknown. Continuous auditory displays extending pulse oximetry seem to shorten response times and improve the ability to time-share other tasks, but their integration into the already noisy operative environment still needs to be tested. We reviewed the advantages and disadvantages of the three approaches, drawing on findings from other fields, such as aviation, to suggest outcomes where there are still no results for the anesthesia context. Proving that advanced patient monitoring displays improve patient outcomes is difficult, and a more realistic goal is probably to prove that such displays lead to better situational awareness, earlier responding, and less workload, all of which keep anesthesia practice away from the outer boundaries of safe operation.
Resumo:
A head-up display (HUD) is a projection of symbology into the pilot's forward field of view that enables the pilot to monitor the instrumentation while, theoretically, also viewing the external domain. Although the HUD has been shown to improve flight performance, there are perceptual and cognitive issues that need to be addressed. This article reviews selected literature that investigates these issues and the possible solutions posed and identifies areas that remain in doubt.
Resumo:
The effect of the box shape on the dynamic behavior of proteins simulated under periodic boundary conditions is evaluated. In particular, the influence of simulation boxes defined by the near-densest lattice packing (NDLP) in conjunction with rotational constraints is compared to that of standard box types without these constraints. Three different proteins of varying size, shape, and secondary structure content were examined in the study. The statistical significance of differences in RMSD, radius of gyration, solvent-accessible surface, number of hydrogen bonds, and secondary structure content between proteins, box types, and the application or not of rotational constraints has been assessed. Furthermore, the differences in the collective modes for each protein between different boxes and the application or not of rotational constraints have been examined. In total 105 simulations were performed, and the results compared using a three-way multivariate analysis of variance (MANOVA) for properties derived from the trajectories and a three-way univariate analysis of variance (ANOVA) for collective modes. It is shown that application of roto-translational constraints does not have a statistically significant effect on the results obtained from the different simulations. However, the choice of simulation box was found to have a small (5-10%), but statistically significant effect on the behavior of two of the three proteins included in the study. (c) 2005 Wiley Periodicals, Inc.
Resumo:
A vision of the future of intraoperative monitoring for anesthesia is presented-a multimodal world based on advanced sensing capabilities. I explore progress towards this vision, outlining the general nature of the anesthetist's monitoring task and the dangers of attentional capture. Research in attention indicates different kinds of attentional control, such as endogenous and exogenous orienting, which are critical to how awareness of patient state is maintained, but which may work differently across different modalities. Four kinds of medical monitoring displays are surveyed: (1) integrated visual displays, (2) head-mounted displays, (3) advanced auditory displays and (4) auditory alarms. Achievements and challenges in each area are outlined. In future research, we should focus more clearly on identifying anesthetists' information needs and we should develop models of attention in different modalities and across different modalities that are more capable of guiding design. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Despite our detailed characterization of the human genome at the level of the primary DNA sequence, we are still far from understanding the molecular events underlying phenotypic variation. Epigenetic modifications to the DNA sequence and associated chromatin are known to regulate gene expression and, as such, are a significant contributor to phenotype. Studies of inbred mice and monozygotic twins show that variation in the epigenotype can be seen even between genetically identical individuals and that this, in some cases at least, is associated with phenotypic differences. Moreover, recent evidence suggests that the epigenome can be influenced by the environment and these changes can last a lifetime. However, we also know that epigenetic states in real-time are in continual flux and, as a result, the epigenome exhibits instability both within and across generations. We still do not understand the rules governing the establishment and maintenance of the epigenotype at any particular locus. The underlying DNA sequence itself and the sequence at unlinked loci (modifier loci) are certainly involved. Recent support for the existence of transgenerational epigenetic inheritance in mammals suggests that the epigenetic state of the locus in the previous generation may also play a role. Over the next decade, many of these processes will be better understood, heralding a greater capacity for us to correlate measurable molecular marks with phenotype and providing the opportunity for improved diagnosis and presymptomatic healthcare.
Resumo:
We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.