985 resultados para rotational constants
Resumo:
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.
Resumo:
Experimental data from ultrasonic and inelastic neutron scattering measurements are analyzed for different families of Cu-based shape-memory alloys. It is shown that the transition occurs at a value, independent of composition and alloy family, of the ratio between the elastic constants associated with the two shears necessary to accomplish the lattice distortion from the bcc to the close-packed structure. The zone boundary frequency of the TA2[110] branch evaluated at the transition point (TM), weakly depends, for each family, on composition. A linear relationship between this frequency and the inverse of the elastic constant C', both quantities evaluated at TM, has been found, in agreement with the prediction of a Landau model proposed for martensitic transformations.
Resumo:
The basic photosynthetic unit containing the reaction centre and the light-harvesting I complex (RC-LHI) of the purple non-sulphur bacterium Rhodospirillum rubrum was purified and reconstituted into two-dimensional (2D) membrane crystals. Transmission electron microscopy using conventional techniques and cryoelectron microscopy of the purified single particles and of 2D crystals yielded a projection of the RC-LHI complex at a resolution of at least 1.6 nm. In this projection the LHI ring appears to have a square symmetry and packs in a square crystal lattice. The square geometry of the LHI ring was observed also in images of single isolated particles of the RC-LHI complex. However, although the LHI units are packed identically within the crystal lattice, a new rotational analysis developed here showed that the reaction centres take up one of four possible orientations within the ring. This fourfold disorder supports our interpretation of a square ring symmetry and suggests that a hitherto undetected component may be present within the photosynthetic unit.
Resumo:
Background: Arthrodesis of the knee by intramedullary fixation hasbeen reported to have a higher rate of success than external fixationor compression plating. Antegrade nailing however can lead to complicationsdue to the different diameters of the medullary canals, fracturesduring insertion, poor rotational stability, breakage of the IM-nailand insufficient compression at the fusion site.Method: This retrospective study reports all knee fusions performedby the same orthopaedic surgeon with the Wichita (Stryker) fusion nail(WFN) from 2004 to 2010. The Wichita nail is a short nail with a deviceat the knee which allows for coupling of differently sized and interlockedfemoral and tibial components and at the same time for compression.Results: We report of 18 patients with a mean follow up of 28 months(range 3-71 months). Infected TKA was the most common indicationfor arthrodesis in 9 cases. The remaining reasons included asepticfailed TKA in 3 cases, 2 patients after fracture, 1 patient with neurologicalinstability after knee dislocation, 1 patient after tumoral resectionand 1 non union after failed arthrodesis with long antegrade nail.Finally 1 patient with bilateral congenital knee dislocation operated onboth sides. As expected, patients receiving the WFN had undergonea large number of previous knee surgeries with a mean of 3.8 (range0-8) procedures per patient. The complication rate was 27% (5 of 18).Two patients had persistent pain requiring revision surgery to increasestability with plating. One case of periprosthetic fracture needed openreduction and internal fixation. 2 patients with superficial hematomawere treated one with open drainage and the other with physiotherapy.Infection was erradicated in all septic cases, we found no new infectionand the fusion rate was 100%.Conclusion: The results in these often difficult cases are satisfyingand we think that this technique is a valid alternative to the otherknown techniques of knee fusion in patients with a poor bone stockand fragile soft tissues.
Resumo:
This manual summarizes the roadside tree and brush control methods used by all of Iowa's 99 counties. It is based on interviews conducted in Spring 2002 with county engineers, roadside managers and others. The target audience of this manual is the novice county engineer or roadside manager. Iowa law is nearly silent on roadside tree and brush control, so individual counties have been left to decide on the level of control they want to achieve and maintain. Different solutions have been developed but the goal of every county remains the same: to provide safe roads for the traveling public. Counties in eastern and southern Iowa appear to face the greatest brush control challenge. Most control efforts can be divided into two categories: mechanical and chemical. Mechanical control includes cutting tools and supporting equipment. A chain saw is the most widely used cutting tool. Tractor mounted boom mowers and brush cutters are used to prune miles of brush but have significant safety and aesthetic limitations and boom mowers are easily broken by inexperienced operators. The advent of tree shears and hydraulic thumbs offer unprecedented versatility. Bulldozers are often considered a method of last resort since they reduce large areas to bare ground. Any chipper that violently grabs brush should not be used. Chemical control is the application of herbicide to different parts of a plant: foliar spray is applied to leaves; basal bark spray is applied to the tree trunk; a cut stump treatment is applied to the cambium ring of a cut surface. There is reluctance by many to apply herbicide into the air due to drift concerns. One-third of Iowa counties do not use foliar spray. By contrast, several accepted control methods are directed toward the ground. Freshly cut stumps should be treated to prevent resprouting. Basal bark spray is highly effective in sensitive areas such as near houses. Interest in chemical control is slowly increasing as herbicides and application methods are refined. Fall burning, a third, distinctly separate technique is underused as a brush control method and can be effective if timed correctly. In all, control methods tend to reflect agricultural patterns in a county. The use of chain saws and foliar sprays tends to increase in counties where row crops predominate, and boom mowing tends to increase in counties where grassland predominates. For counties with light to moderate roadside brush, rotational maintenance is the key to effective control. The most comprehensive approach to control is to implement an integrated roadside vegetation management (IRVM) program. An IRVM program is usually directed by a Roadside Manager whose duties may be shared with another position. Funding for control programs comes from the Rural Services Basic portion of a county's budget. The average annual county brush control budget is about $76,000. That figure is thought not to include shared expenses such as fuel and buildings. Start up costs for an IRVM program are less if an existing control program is converted. In addition, IRVM budgets from three different northeastern Iowa counties are offered for comparison in this manual. The manual also includes a chapter on temporary traffic control in rural work zones, a summary of the Iowa Code as it relates to brush control, and rules on avoiding seasonal disturbance of the endangered Indiana bat. Appendices summarize survey and forest cover data, an equipment inventory, sample forms for record keeping, a sample brush control policy, a few legal opinions, a literature search, and a glossary.
Resumo:
The TNF family ligand ectodysplasin A (EDA) and its receptor EDAR are required for proper development of skin appendages such as hair, teeth, and eccrine sweat glands. Loss of function mutations in the Eda gene cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition that can be ameliorated in mice and dogs by timely administration of recombinant EDA. In this study, several agonist anti-EDAR monoclonal antibodies were generated that cross-react with the extracellular domains of human, dog, rat, mouse, and chicken EDAR. Their half-life in adult mice was about 11 days. They induced tail hair and sweat gland formation when administered to newborn EDA-deficient Tabby mice, with an EC(50) of 0.1 to 0.7 mg/kg. Divalency was necessary and sufficient for this therapeutic activity. Only some antibodies were also agonists in an in vitro surrogate activity assay based on the activation of the apoptotic Fas pathway. Activity in this assay correlated with small dissociation constants. When administered in utero in mice or at birth in dogs, agonist antibodies reverted several ectodermal dysplasia features, including tooth morphology. These antibodies are therefore predicted to efficiently trigger EDAR signaling in many vertebrate species and will be particularly suited for long term treatments.
Resumo:
Diffeomorphism-induced symmetry transformations and time evolution are distinct operations in generally covariant theories formulated in phase space. Time is not frozen. Diffeomorphism invariants are consequently not necessarily constants of the motion. Time-dependent invariants arise through the choice of an intrinsic time, or equivalently through the imposition of time-dependent gauge fixation conditions. One example of such a time-dependent gauge fixing is the Komar-Bergmann use of Weyl curvature scalars in general relativity. An analogous gauge fixing is also imposed for the relativistic free particle and the resulting complete set time-dependent invariants for this exactly solvable model are displayed. In contrast with the free particle case, we show that gauge invariants that are simultaneously constants of motion cannot exist in general relativity. They vary with intrinsic time.
Resumo:
We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of the decay widths of bottomonium P-wave states from charmonium data.
Resumo:
We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of the decay widths of bottomonium P-wave states from charmonium data.
Resumo:
The He2-SF6 trimers, in their different He isotopic combinations, are studied in the framework of both the correlated Jastrow approach and the correlated hyperspherical harmonics (CHH) expansion method. The energetics and structure of the He-SF6 dimers are analyzed, and the existence of a characteristic rotational band in the excitation spectrum is discussed, as well as the isotopic differences. The binding energies and the spatial properties of the trimers, in their ground and lowest lying excited states, obtained by the Jastrow ansatz are in excellent agreement with the results of the converged CHH expansion. The introduction of the He-He correlation makes all trimers bound by largely suppressing the short range He-He repulsion. The structural properties of the trimers are qualitatively explained in terms of the shape of the interactions, Pauli principle, and masses of the constituents.
Resumo:
We study the dynamics of annihilation of point defects in Langmuir monolayers. The absence of hydrodynamic effects allows us to quantitatively relate the asymmetry in defect mobility to the elastic anisotropy of the material, which in turn can be varied through the control of the surface pressure applied to the monolayer. Using the proposed theoretical analysis, we are able to obtain rather elusive equilibrium properties out of relatively simple dynamical measurements. In particular, we measure the elastic constants and their pressure dependence.
Resumo:
Urea is the most consumed nitrogen fertilizer in the world. However, its agronomic and economic efficiency is reduced by the volatilization of NH3, which can reach 78 % of the applied nitrogen. The coating of urea granules with acidic compounds obtained by charcoal oxidation has the potential to reduce the volatilization, due to the acidic character, the high buffering capacity and CEC. This work aimed to evaluate the effect of HNO3-oxidized carbon on the control of NH3 volatilization. These compounds were obtained by oxidation of Eucalyptus grandis charcoal, produced at charring temperatures of 350 and 450 ºC, with 4.5 mol L-1 HNO3. The charcoal was oxidized by solubilization in acidic or alkaline medium, similar to the procedure of soil organic matter fractionation (CHox350 and CHox450). CHox was characterized by C, H, O, N contents and their respective atomic relations, by the ratio E4 (absorbance 465 nm) by E6 (absorbance 665 nm), and by active acidity and total acidity (CEC). The inhibitory effect of CHox on the urease activity of Canavalia ensiformis was assessed in vitro. The NH3 volatilization from urea was evaluated with and without coating of oxidized charcoal (U-CHox350 or U-CHox450) in a closed system with continuous air flow. The pH of both CHox was near 2.0, but the total acidity of CHox350 was higher, 72 % of which was attributed to carboxylic groups. The variation in the ionization constants of CHox350 was also greater. The low E4/E6 ratios characterize the high stability of the compounds in CHox. CHox did not inhibit the urease activity in vitro, although the maximum volatilization peak from U-CHox450 and U-CHox350 occurred 24 h after that observed for uncoated urea. The lowest volatilization rate was observed for U-CHox350 as well as a 43 % lower total amount of NH3 volatilized than from uncoated urea.
Resumo:
Using Monte Carlo simulations we study the dynamics of three-dimensional Ising models with nearest-, next-nearest-, and four-spin (plaquette) interactions. During coarsening, such models develop growing energy barriers, which leads to very slow dynamics at low temperature. As already reported, the model with only the plaquette interaction exhibits some of the features characteristic of ordinary glasses: strong metastability of the supercooled liquid, a weak increase of the characteristic length under cooling, stretched-exponential relaxation, and aging. The addition of two-spin interactions, in general, destroys such behavior: the liquid phase loses metastability and the slow-dynamics regime terminates well below the melting transition, which is presumably related with a certain corner-rounding transition. However, for a particular choice of interaction constants, when the ground state is strongly degenerate, our simulations suggest that the slow-dynamics regime extends up to the melting transition. The analysis of these models leads us to the conjecture that in the four-spin Ising model domain walls lose their tension at the glassy transition and that they are basically tensionless in the glassy phase.
Resumo:
Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the evolution of ground state structures of such systems as the rotational frequency Omega increases. Various kinds of ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density. For N < 10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is restricted to the vicinity of some critical values of the rotational frequency Omega.
Resumo:
We study the signatures of rotational and phase symmetry breaking in small rotating clouds of trapped ultracold Bose atoms by looking at rigorously defined condensate wave function. Rotational symmetry breaking occurs in narrow frequency windows, where energy degeneracy between the lowest energy states of different total angular momentum takes place. This leads to a complex condensate wave function that exhibits vortices clearly seen as holes in the density, as well as characteristic local phase patterns, reflecting the appearance of vorticities. Phase symmetry (or gauge symmetry) breaking, on the other hand, is clearly manifested in the interference of two independent rotating clouds.