940 resultados para revised Aleph Account


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geological map shows the border area between the polyphase (late Mesoproterozoic and Cambrian) deformed Sivorg Terrane and the Kottas Terrane where a pervasive Cambrian tectonometamorphic overprints is lacking. Geological revision mapping was carried out during the Antarctic Expedition 2000/01 of the Alfred Wegener Institute for Polar and Marine Research. Topographic data were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (height differences) are accurate to approximately ±10 m. Published by Geologisches Institut der RWTH Aachen & Fachbereich Geowissenschaften, Bremen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core-top samples from different ocean basins have been analyzed to refine our current understanding of the sensitivity of benthic foraminiferal calcite magnesium/calcium (Mg/Ca) to bottom water temperatures (BWT). Benthic foraminifera collected from Hawaii, Little Bahama Bank, Sea of Okhotsk, Gulf of California, NE Atlantic, Ceara Rise, Sierra Leone Rise, the Ontong Java Plateau, and the Southern Ocean covering a temperature range of 0.8 to 18°C were used to revise the Cibicidoides Mg/Ca-temperature calibration. The Mg/Ca-BWT relationship of three common Cibicidoides species is described by an exponential equation: Mg/Ca = 0.867 ± 0.049 exp (0.109 ± 0.007 * BWT) (stated errors are 95% CI). The temperature sensitivity is very similar to a previously published calibration. However, the revised calibration has a significantly different preexponential constant, resulting in different predicted absolute temperatures. We attribute this difference in the preexponential constant to an analytical issue of accuracy. Some genera, notably Uvigerina, show apparently lower temperature sensitivity than others, suggesting that the use of constant offsets to account for vital effects in Mg/Ca may not be appropriate. Downcore Mg/Ca reproducibility, as determined on replicate foraminiferal samples, is typically better than 0.1 mmol/mol (2 S.E.). Thus, considering the errors associated with the Cibicidoides calibration and the downcore reproducibility, BWT may be estimated to within ±1°C. Application of the revised core-top Mg/Ca-BWT data to Cenozoic foraminiferal Mg/Ca suggests that seawater Mg/Ca was not more than 35% lower than today in the ice-free ocean at 50 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pliocene period is the most recent time when the Earth was globally significantly (~3°C) warmer than today. However, the existing pCO2 data for the Pliocene are sparse and there is little agreement between the various techniques used to reconstruct palaeo-pCO2. Moreover, the temporal resolution of the published records does not allow a robust assessment of the role of declining pCO2 in the intensification of the Northern Hemisphere Glaciation (INHG) and a direct comparison to other proxy records are lacking. For the first time, we use a combination of foraminiferal (delta11B) and organic biomarker (alkenone-derived carbon isotopes) proxies to determine the concentration of atmospheric CO2 over the past 5 Ma. Both proxy records show that during the warm Pliocene pCO2 was between 330 and 400 ppm, i.e. similar to today. The decrease to values similar to pre-industrial times (275-285 ppm) occurred between 3.2 Ma and 2.8 Ma - coincident with the INHG and affirming the link between global climate, the cryosphere and pCO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Integrated OceanDrilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), recovered the first Cenozoic sedimentary sequence from the central Arctic Ocean. ACEX provided ground truth for basin scale geophysical interpretations and for guiding future exploration targets in this largely unexplored ocean basin. Here, we present results from a series of consolidation tests used to characterize sediment compressibility and permeability and integrate these with high-resolution measurements of bulk density, porosity and shear strength to investigate the stress history and the nature of prominent lithostratigraphic and seismostratigraphic boundaries in the ACEX record. Despite moderate sedimentation rates (10-30 m/Myr) and high permeability values (10**-15 -10**-18 m**2), consolidation and shear strength measurements both suggest an overall state of underconsolidation or overpressure. One-dimensional compaction modelling shows that to maintain such excess pore pressures, an in situ fluid source is required that exceeds the rate of fluid expulsion generated by mechanical compaction alone. Geochemical and sedimentological evidence is presented that identifes the Opal A-C/T transformation of biosiliceous rich sediments as a potential additional in situ fluid source.However, the combined rat of chemical and mechanical compaction remain too low to fully account for the observed pore pressure gradients, implying an additional diagenetic fluid source from within or below the recovered Cenozoic sediments from ACEX. Recognition of the Opal A-C/T reaction front in the ACEX record has broad reaching regional implications on slope stability and subsurface pressure evolution, and provides an important consideration for interpreting and correlating the spatially limited seismic data from the Arctic Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MBT-CBT proxy for the reconstruction of paleotemperatures and past soil pH is based on the distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids. The Methylation of Branched Tetraether (MBT) and the Cyclisation of Branched Tetraether (CBT) indices were developed to quantify these distributions, and significant empirical relations between these indices and annual mean air temperature (MAT) and/or soil pH were found in a large data set of soils. In this study, we extended this soil dataset to 278 globally distributed surface soils. Of these soils, 26% contains all nine brGDGTs, while in 63% of the soils the seven most common brGDGTs were detected, and the latter were selected for calibration purposes. This resulted in new transfer functions for the reconstruction of pH based on the CBT index: pH = 7.90-1.97 × CBT (r**2 = 0.70; RMSE = 0.8; n = 176), as well as for MAT based on the CBT index and methylation index based on the seven most abundant GDGTs (defined as MBT'): MAT = 0.81-5.67 × CBT + 31.0 × MBT' (r**2 = 0.59; RMSE = 5.0 °C; n = 176). The new transfer function for MAT has a substantially lower correlation coefficient than the original equation (r**2 = 0.77). To investigate possible improvement of the correlation, we used our extended global surface soil dataset to statistically derive the indices that best describe the relations of brGDGT composition with MAT and soil pH. These new indices, however, resulted in only a relatively minor increase in correlation coefficients, while they cannot be explained straightforwardly by physiological mechanisms. The large scatter in the calibration cannot be fully explained by local factors or by seasonality, but MAT for soils from arid regions are generally substantially (up to 20 °C) underestimated, suggesting that absolute brGDGT-based temperature records for these areas should be interpreted with caution. The applicability of the new MBT'-CBT calibration function was tested using previously published MBT-CBT-derived paleotemperature records covering the last deglaciation in Central Africa and East Asia, the Eocene-Oligocene boundary and the Paleocene-Eocene thermal maximum. The results show that trends remain similar in all records, but that absolute temperature estimates and the amplitude of temperature changes are lower for most records, and generally in better agreement with independent proxy data.