907 resultados para rank regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation develops and explores the methodology for the use of cubic spline functions in assessing time-by-covariate interactions in Cox proportional hazards regression models. These interactions indicate violations of the proportional hazards assumption of the Cox model. Use of cubic spline functions allows for the investigation of the shape of a possible covariate time-dependence without having to specify a particular functional form. Cubic spline functions yield both a graphical method and a formal test for the proportional hazards assumption as well as a test of the nonlinearity of the time-by-covariate interaction. Five existing methods for assessing violations of the proportional hazards assumption are reviewed and applied along with cubic splines to three well known two-sample datasets. An additional dataset with three covariates is used to explore the use of cubic spline functions in a more general setting. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Bayesian approach to estimation of the regression coefficients of a multinominal logit model with ordinal scale response categories is presented. A Monte Carlo method is used to construct the posterior distribution of the link function. The link function is treated as an arbitrary scalar function. Then the Gauss-Markov theorem is used to determine a function of the link which produces a random vector of coefficients. The posterior distribution of the random vector of coefficients is used to estimate the regression coefficients. The method described is referred to as a Bayesian generalized least square (BGLS) analysis. Two cases involving multinominal logit models are described. Case I involves a cumulative logit model and Case II involves a proportional-odds model. All inferences about the coefficients for both cases are described in terms of the posterior distribution of the regression coefficients. The results from the BGLS method are compared to maximum likelihood estimates of the regression coefficients. The BGLS method avoids the nonlinear problems encountered when estimating the regression coefficients of a generalized linear model. The method is not complex or computationally intensive. The BGLS method offers several advantages over Bayesian approaches. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Logistic regression is one of the most important tools in the analysis of epidemiological and clinical data. Such data often contain missing values for one or more variables. Common practice is to eliminate all individuals for whom any information is missing. This deletion approach does not make efficient use of available information and often introduces bias.^ Two methods were developed to estimate logistic regression coefficients for mixed dichotomous and continuous covariates including partially observed binary covariates. The data were assumed missing at random (MAR). One method (PD) used predictive distribution as weight to calculate the average of the logistic regressions performing on all possible values of missing observations, and the second method (RS) used a variant of resampling technique. Additional seven methods were compared with these two approaches in a simulation study. They are: (1) Analysis based on only the complete cases, (2) Substituting the mean of the observed values for the missing value, (3) An imputation technique based on the proportions of observed data, (4) Regressing the partially observed covariates on the remaining continuous covariates, (5) Regressing the partially observed covariates on the remaining continuous covariates conditional on response variable, (6) Regressing the partially observed covariates on the remaining continuous covariates and response variable, and (7) EM algorithm. Both proposed methods showed smaller standard errors (s.e.) for the coefficient involving the partially observed covariate and for the other coefficients as well. However, both methods, especially PD, are computationally demanding; thus for analysis of large data sets with partially observed covariates, further refinement of these approaches is needed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of ridge regression estimators have been proposed and used with little knowledge of their true distributions. Because of this lack of knowledge, these estimators cannot be used to test hypotheses or to form confidence intervals.^ This paper presents a basic technique for deriving the exact distribution functions for a class of generalized ridge estimators. The technique is applied to five prominent generalized ridge estimators. Graphs of the resulting distribution functions are presented. The actual behavior of these estimators is found to be considerably different than the behavior which is generally assumed for ridge estimators.^ This paper also uses the derived distributions to examine the mean squared error properties of the estimators. A technique for developing confidence intervals based on the generalized ridge estimators is also presented. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few, if any studies, have attempted to identify the specific environmental factors associated with the incidence of diarrheal disease and to rank these by their contribution to the total incidence of diarrheal illness. Potentially those factors with the greatest contribution are the variables on which intervention could be expected to have the greatest impact on the incidence of diarrhea.^ In 317 rural Egyptian households participating in a longitudinal study of diarrheal disease, selected environmental characteristics were observed and recorded on a questionnaire. Characteristics of the environment were classified into seven categories including water usage, proximity of animals to the house, waste management, food preparation area, toilet area, the household structure and hygiene. The variables from each of the seven major groupings most associated with the incidence of diarrhea in infants were selected through the application of stepwise multiple regression. Each area was then ranked by the portion of the incidence of diarrhea in infants that each composite group of area-specific variables alone would explain. The groups of household structure and water usage variables were found to be more associated with the incidence of diarrhea in infants than variables describing the toilet area, proximity to animals or others. It was also found that 24.7% of the total variance in incidence of diarrheal illness was explained by environmental variables. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sizes and power of selected two-sample tests of the equality of survival distributions are compared by simulation for small samples from unequally, randomly-censored exponential distributions. The tests investigated include parametric tests (F, Score, Likelihood, Asymptotic), logrank tests (Mantel, Peto-Peto), and Wilcoxon-Type tests (Gehan, Prentice). Equal sized samples, n = 18, 16, 32 with 1000 (size) and 500 (power) simulation trials, are compared for 16 combinations of the censoring proportions 0%, 20%, 40%, and 60%. For n = 8 and 16, the Asymptotic, Peto-Peto, and Wilcoxon tests perform at nominal 5% size expectations, but the F, Score and Mantel tests exceeded 5% size confidence limits for 1/3 of the censoring combinations. For n = 32, all tests showed proper size, with the Peto-Peto test most conservative in the presence of unequal censoring. Powers of all tests are compared for exponential hazard ratios of 1.4 and 2.0. There is little difference in power characteristics of the tests within the classes of tests considered. The Mantel test showed 90% to 95% power efficiency relative to parametric tests. Wilcoxon-type tests have the lowest relative power but are robust to differential censoring patterns. A modified Peto-Peto test shows power comparable to the Mantel test. For n = 32, a specific Weibull-exponential comparison of crossing survival curves suggests that the relative powers of logrank and Wilcoxon-type tests are dependent on the scale parameter of the Weibull distribution. Wilcoxon-type tests appear more powerful than logrank tests in the case of late-crossing and less powerful for early-crossing survival curves. Guidelines for the appropriate selection of two-sample tests are given. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The history of the logistic function since its introduction in 1838 is reviewed, and the logistic model for a polychotomous response variable is presented with a discussion of the assumptions involved in its derivation and use. Following this, the maximum likelihood estimators for the model parameters are derived along with a Newton-Raphson iterative procedure for evaluation. A rigorous mathematical derivation of the limiting distribution of the maximum likelihood estimators is then presented using a characteristic function approach. An appendix with theorems on the asymptotic normality of sample sums when the observations are not identically distributed, with proofs, supports the presentation on asymptotic properties of the maximum likelihood estimators. Finally, two applications of the model are presented using data from the Hypertension Detection and Follow-up Program, a prospective, population-based, randomized trial of treatment for hypertension. The first application compares the risk of five-year mortality from cardiovascular causes with that from noncardiovascular causes; the second application compares risk factors for fatal or nonfatal coronary heart disease with those for fatal or nonfatal stroke. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional comparison of standardized mortality ratios (SMRs) can be misleading if the age-specific mortality ratios are not homogeneous. For this reason, a regression model has been developed which incorporates the mortality ratio as a function of age. This model is then applied to mortality data from an occupational cohort study. The nature of the occupational data necessitates the investigation of mortality ratios which increase with age. These occupational data are used primarily to illustrate and develop the statistical methodology.^ The age-specific mortality ratio (MR) for the covariates of interest can be written as MR(,ij...m) = ((mu)(,ij...m)/(theta)(,ij...m)) = r(.)exp (Z('')(,ij...m)(beta)) where (mu)(,ij...m) and (theta)(,ij...m) denote the force of mortality in the study and chosen standard populations in the ij...m('th) stratum, respectively, r is the intercept, Z(,ij...m) is the vector of covariables associated with the i('th) age interval, and (beta) is a vector of regression coefficients associated with these covariables. A Newton-Raphson iterative procedure has been used for determining the maximum likelihood estimates of the regression coefficients.^ This model provides a statistical method for a logical and easily interpretable explanation of an occupational cohort mortality experience. Since it gives a reasonable fit to the mortality data, it can also be concluded that the model is fairly realistic. The traditional statistical method for the analysis of occupational cohort mortality data is to present a summary index such as the SMR under the assumption of constant (homogeneous) age-specific mortality ratios. Since the mortality ratios for occupational groups usually increase with age, the homogeneity assumption of the age-specific mortality ratios is often untenable. The traditional method of comparing SMRs under the homogeneity assumption is a special case of this model, without age as a covariate.^ This model also provides a statistical technique to evaluate the relative risk between two SMRs or a dose-response relationship among several SMRs. The model presented has application in the medical, demographic and epidemiologic areas. The methods developed in this thesis are suitable for future analyses of mortality or morbidity data when the age-specific mortality/morbidity experience is a function of age or when there is an interaction effect between confounding variables needs to be evaluated. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the difficulties in the practical application of ridge regression is that, for a given data set, it is unknown whether a selected ridge estimator has smaller squared error than the least squares estimator. The concept of the improvement region is defined, and a technique is developed which obtains approximate confidence intervals for the value of ridge k which produces the maximum reduction in mean squared error. Two simulation experiments were conducted to investigate how accurate these approximate confidence intervals might be. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an obvious carcinogen for lung cancer. Since CBMN (Cytokinesis-blocked micronucleus) has been found to be extremely sensitive to NNK-induced genetic damage, it is a potential important factor to predict the lung cancer risk. However, the association between lung cancer and NNK-induced genetic damage measured by CBMN assay has not been rigorously examined. ^ This research develops a methodology to model the chromosomal changes under NNK-induced genetic damage in a logistic regression framework in order to predict the occurrence of lung cancer. Since these chromosomal changes were usually not observed very long due to laboratory cost and time, a resampling technique was applied to generate the Markov chain of the normal and the damaged cell for each individual. A joint likelihood between the resampled Markov chains and the logistic regression model including transition probabilities of this chain as covariates was established. The Maximum likelihood estimation was applied to carry on the statistical test for comparison. The ability of this approach to increase discriminating power to predict lung cancer was compared to a baseline "non-genetic" model. ^ Our method offered an option to understand the association between the dynamic cell information and lung cancer. Our study indicated the extent of DNA damage/non-damage using the CBMN assay provides critical information that impacts public health studies of lung cancer risk. This novel statistical method could simultaneously estimate the process of DNA damage/non-damage and its relationship with lung cancer for each individual.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is the third most preventable cardiovascular disease and a growing public health problem in the United States. The incidence of VTE remains high with an annual estimate of more than 600,000 symptomatic events. DVT affects an estimated 2 million American each year with a death toll of 300,000 persons per year from DVT-related PE. Leukemia patients are at high risk for both hemorrhage and thrombosis; however, little is known about thrombosis among acute leukemia patients. The ultimate goal of this dissertation was to obtain deep understanding of thrombotic issue among acute leukemia patients. The dissertation was presented in a format of three papers. First paper mainly looked at distribution and risk factors associated with development of VTE among patients with acute leukemia prior to leukemia treatment. Second paper looked at incidence, risk factors, and impact of VTE on survival of patients with acute lymphoblastic leukemia during treatment. Third paper looked at recurrence and risk factors for VTE recurrence among acute leukemia patients with an initial episode of VTE. Descriptive statistics, Chi-squared or Fisher's exact test, median test, Mann-Whitney test, logistic regression analysis, Nonparametric Estimation Kaplan-Meier with a log-rank test or Cox model were used when appropriate. Results from analyses indicated that acute leukemia patients had a high prevalence, incidence, and recurrent rate of VTE. Prior history of VTE, obesity, older age, low platelet account, presence of Philadelphia positive ALL, use of oral contraceptives or hormone replacement therapy, presence of malignancies, and co-morbidities may place leukemia patients at an increased risk for VTE development or recurrence. Interestingly, development of VTE was not associated with a higher risk of death among hospitalized acute leukemia patients.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis B virus (HBV) is a significant cause of liver diseases and related complications worldwide. Both injecting and non-injecting drug users are at increased risk of contracting HBV infection. Scientific evidence suggests that drug users have subnormal response to HBV vaccination and the seroprotection rates are lower than that in the general population; potentially due to vaccine factors, host factors, or both. The purpose of this systematic review is to examine the rates of seroprotection following HBV vaccination in drug using populations and to conduct a meta-analysis to identify the factors associated with varying seroprotection rates. Seroprotection is defined as developing an anti-HBs antibody level of ≥ 10 mIU/ml after receiving the HBV vaccine. Original research articles were searched using online databases and reference lists of shortlisted articles. HBV vaccine intervention studies reporting seroprotection rates in drug users and published in English language during or after 1989 were eligible. Out of 235 citations reviewed, 11 studies were included in this review. The reported seroprotection rates ranged from 54.5 – 97.1%. Combination vaccine (HAV and HBV) (Risk ratio 12.91, 95% CI 2.98-55.86, p = 0.003), measurement of anti-HBs with microparticle immunoassay (Risk ratio 3.46, 95% CI 1.11-10.81, p = 0.035) and anti-HBs antibody measurement at 2 months after the last HBV vaccine dose (RR 4.11, 95% CI 1.55-10.89, p = 0.009) were significantly associated with higher seroprotection rates. Although statistically nonsignificant, the variables mean age>30 years, higher prevalence of anti-HBc antibody and anti-HIV antibody in the sample population, and current drug use (not in drug rehabilitation treatment) were strongly associated with decreased seroprotection rates. Proportion of injecting drug users, vaccine dose and accelerated vaccine schedule were not predictors of heterogeneity across studies. Studies examined in this review were significantly heterogeneous (Q = 180.850, p = 0.000) and factors identified should be considered when comparing immune response across studies. The combination vaccine showed promising results; however, its effectiveness compared to standard HBV vaccine needs to be examined systematically. Immune response in DUs can possibly be improved by the use of bivalent vaccines, booster doses, and improving vaccine completion rates through integrated public programs and incentives.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of size as well as power of a test is a vital part of a Clinical Trial Design. This research focuses on the simulation of clinical trial data with time-to-event as the primary outcome. It investigates the impact of different recruitment patterns, and time dependent hazard structures on size and power of the log-rank test. A non-homogeneous Poisson process is used to simulate entry times according to the different accrual patterns. A Weibull distribution is employed to simulate survival times according to the different hazard structures. The current study utilizes simulation methods to evaluate the effect of different recruitment patterns on size and power estimates of the log-rank test. The size of the log-rank test is estimated by simulating survival times with identical hazard rates between the treatment and the control arm of the study resulting in a hazard ratio of one. Powers of the log-rank test at specific values of hazard ratio (≠1) are estimated by simulating survival times with different, but proportional hazard rates for the two arms of the study. Different shapes (constant, decreasing, or increasing) of the hazard function of the Weibull distribution are also considered to assess the effect of hazard structure on the size and power of the log-rank test. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. End-stage liver disease (ESLD) is an irreversible condition that leads to the imminent complete failure of the liver. Orthotopic liver transplantation (OLT) has been well accepted as the best curative option for patients with ESLD. Despite the progress in liver transplantation, the major limitation nowadays is the discrepancy between donor supply and organ demand. In an effort to alleviate this situation, mismatched donor and recipient gender or race livers are being used. However, the simultaneous impact of donor and recipient gender and race mismatching on patient survival after OLT remains unclear and relatively challenging to surgeons. ^ Objective. To examine the impact of donor and recipient gender and race mismatching on patient survival after OLT using the United Network for Organ Sharing (UNOS) database. ^ Methods. A total of 40,644 recipients who underwent OLT between 2002 and 2011 were included. Kaplan-Meier survival curves and the log-rank tests were used to compare the survival rates among different donor-recipient gender and race combinations. Univariate Cox regression analysis was used to assess the association of donor-recipient gender and race mismatching with patient survival after OLT. Multivariable Cox regression analysis was used to model the simultaneous impact of donor-recipient gender and race mismatching on patient survival after OLT adjusting for a list of other risk factors. Multivariable Cox regression analysis stratifying on recipient hepatitis C virus (HCV) status was also conducted to identify the variables that were differentially associated with patient survival in HCV + and HCV − recipients. ^ Results. In the univariate analysis, compared to male donors to male recipients, female donors to male recipients had a higher risk of patient mortality (HR, 1.122; 95% CI, 1.065–1.183), while in the multivariable analysis, male donors to female recipients experienced an increased mortality rates (adjusted HR, 1.114; 95% CI, 1.048–1.184). Compared to white donors to white recipients, Hispanic donors to black recipients had a higher risk of patient mortality (HR, 1.527; 95% CI, 1.293–1.804) in the univariate analysis, and similar result (adjusted HR, 1.553; 95% CI, 1.314–1.836) was noted in multivariable analysis. After the stratification on recipient HCV status in the multivariable analysis, HCV + mismatched recipients appeared to be at greater risk of mortality than HCV − mismatched recipients. Female donors to female HCV − recipients (adjusted HR, 0.843; 95% CI, 0.769–0.923), and Hispanic HCV + recipients receiving livers from black donors (adjusted HR, 0.758; 95% CI, 0.598–0.960) had a protective effect on patient survival after OLT. ^ Conclusion. Donor-recipient gender and race mismatching adversely affect patient survival after OLT, both independently and after the adjustment for other risk factors. Female recipient HCV status is an important effect modifier in the association between donor-recipient gender combination and patient survival.^