898 resultados para rainfall-runoff
Resumo:
Contribution from Bureau of agricultural engineering.
Resumo:
Includes bibliographical references.
Resumo:
Caption title.
Basin rainfall and snowmelt computation : Hydrologic Engineering Center computer program 23-J2-L226.
Resumo:
At head of cover title: Generalized computer program.
Resumo:
Publisher's Lettering 1866-1899: Symon's British Rainfall
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"July 2002."
Resumo:
Cover title.
Resumo:
Dynamic spatial analysis addresses computational aspects of space–time processing. This paper describes the development of a spatial analysis tool and modelling framework that together offer a solution for simulating landscape processes. A better approach to integrating landscape spatial analysis with Geographical Information Systems is advocated in this paper. Enhancements include special spatial operators and map algebra language constructs to handle dispersal and advective flows over landscape surfaces. These functional components to landscape modelling are developed in a modular way and are linked together in a modelling framework that performs dynamic simulation. The concepts and modelling framework are demonstrated using a hydrological modelling example. The approach provides a modelling environment for scientists and land resource managers to write and to visualize spatial process models with ease.
Resumo:
Responses of stomatal conductance (g(s)) and net photosynthesis (A) to changes in soil water availability, photosynthetic photon flux density (Q), air temperature (1) and leaf-to-air vapour pressure deficit (D) were investigated in 4-year-old trees of a dry inland provenance of Eucalyptus argophloia Blakely, and two dry inland provenances (Coominglah and Hungry Hills) and a humid coastal provenance (Wolvi) of Eucalyptus cloeziana F. Muell. between April 2001 and April 2002 in southeast Queensland, Australia. There were minimal differences in A, g, and water relations variables among the coastal and inland provenances of E. cloeziana but large differences between E. argophloia and E. cloeziana. E. argophloia and to a lesser extent the Hungry Hills (inland) provenance of E. cloeziana maintained relatively higher pre-dawn water potential (psi(pd)) during the dry season suggesting possible access to water at depth. Simple phenomenological models of stomatal conductance as a function of Q, T and D explained 60% of variation in gs in E. cloeziana and more than 75% in E. argophloia, when seasonal effect was incorporated in the model. A Ball-Berry model for net photosynthesis explained between 70 and 80% of observed variation in A in both species. These results have implications in matching the dry and humid provenances of E. cloeziana and E. argophloia to suitable sites in subtropical environments. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A 2-year study was carried out on established trees at two sites in southeastern Queensland, Australia, to identify environmental factors that influenced rooting of Backhousia citriodora from cuttings. Complex interactions of rainfall events above 20 mm from the preceding month and mean maximum temperature on stock plants resulted in a correlation with rooting success of r = 0.81 and 0.74 for sites at The University Of Queensland, Gatton Campus, and Cedar Glen, respectively. A more detailed investigation under controlled environmental conditions showed that maintaining stock plants at temperatures between 10 and 30degreesC had no direct effect on rooting capacity. However, temperature was correlated with growth, which may have an indirect effect on root formation. In spring floral initiation was found to only delay rooting and had no effect on the final rooting percentage. A series of seasonal experiments demonstrated that application of the auxins indole-3-acetic acid, indole-3-butyric acid and napthaleneacetic acid over a range of concentrations (1000-8000 mug/ml) did not significantly increase rooting compared to the control and there is no practical advantage in applying auxins. Seasonal results and the temperature experiment also suggest that under a glasshouse environment with higher temperatures in winter and an adequate supply of water, B. citriodora cuttings can be successfully rooted over the whole year. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Rainfall variability occurs over a wide range of temporal scales. Knowledge and understanding of such variability can lead to improved risk management practices in agricultural and other industries. Analyses of temporal patterns in 100 yr of observed monthly global sea surface temperature and sea level pressure data show that the single most important cause of explainable, terrestrial rainfall variability resides within the El Nino-Southern Oscillation (ENSO) frequency domain (2.5-8.0 yr), followed by a slightly weaker but highly significant decadal signal (9-13 yr), with some evidence of lesser but significant rainfall variability at interclecadal time scales (15-18 yr). Most of the rainfall variability significantly linked to frequencies tower than ENSO occurs in the Australasian region, with smaller effects in North and South America, central and southern Africa, and western Europe. While low-frequency (LF) signals at a decadal frequency are dominant, the variability evident was ENSO-like in all the frequency domains considered. The extent to which such LF variability is (i) predictable and (ii) either part of the overall ENSO variability or caused by independent processes remains an as yet unanswered question. Further progress can only be made through mechanistic studies using a variety of models.
Resumo:
The speculation that climate change may impact on sustainable fish production suggests a need to understand how these effects influence fish catch on a broad scale. With a gross annual value of A$ 2.2 billion, the fishing industry is a significant primary industry in Australia. Many commercially important fish species use estuarine habitats such as mangroves, tidal flats and seagrass beds as nurseries or breeding grounds and have lifecycles correlated to rainfall and temperature patterns. Correlation of catches of mullet (e.g. Mugil cephalus) and barramundi (Lates calcarifer) with rainfall suggests that fisheries may be sensitive to effects of climate change. This work reviews key commercial fish and crustacean species and their link to estuaries and climate parameters. A conceptual model demonstrates ecological and biophysical links of estuarine habitats that influences capture fisheries production. The difficulty involved in explaining the effect of climate change on fisheries arising from the lack of ecological knowledge may be overcome by relating climate parameters with long-term fish catch data. Catch per unit effort (CPUE), rainfall, the Southern Oscillation Index (SOI) and catch time series for specific combinations of climate seasons and regions have been explored and surplus production models applied to Queensland's commercial fish catch data with the program CLIMPROD. Results indicate that up to 30% of Queensland's total fish catch and up to 80% of the barramundi catch variation for specific regions can be explained by rainfall often with a lagged response to rainfall events. Our approach allows an evaluation of the economic consequences of climate parameters on estuarine fisheries. thus highlighting the need to develop forecast models and manage estuaries for future climate chan e impact by adjusting the quota for climate change sensitive species. Different modelling approaches are discussed with respect to their forecast ability. (c) 2006 Elsevier Ltd. All rights reserved.