991 resultados para programming models
Resumo:
A spreadsheet usually starts as a simple and singleuser software artifact, but, as frequent as in other software systems, quickly evolves into a complex system developed by many actors. Often, different users work on different aspects of the same spreadsheet: while a secretary may be only involved in adding plain data to the spreadsheet, an accountant may define new business rules, while an engineer may need to adapt the spreadsheet content so it can be used by other software systems.Unfortunately,spreadsheetsystemsdonotoffermodular mechanisms, and as a consequence, some of the previous tasks may be defined by adding intrusive “code” to the spreadsheet. In this paper we go through the design and implementation of an aspect-oriented language for spreadsheets so that users can work on different aspects of a spreadsheet in a modular way. For example, aspects can be defined in order to introduce new business rules to an existing spreadsheet, or to manipulate the spreadsheet data to be ported to another system. Aspects are defined as aspect-oriented program specifications that are dynamically woven into the underlying spreadsheet by an aspect weaver. In this aspect-oriented style of spreadsheet development, differentusers develop,orreuse,aspects withoutaddingintrusive code to the original spreadsheet. Such code is added/executed by the spreadsheet weaving mechanism proposed in this paper.
Resumo:
This paper introduces the metaphorism pattern of relational specification and addresses how specification following this pattern can be refined into recursive programs. Metaphorisms express input-output relationships which preserve relevant information while at the same time some intended optimization takes place. Text processing, sorting, representation changers, etc., are examples of metaphorisms. The kind of metaphorism refinement proposed in this paper is a strategy known as change of virtual data structure. It gives sufficient conditions for such implementations to be calculated using relation algebra and illustrates the strategy with the derivation of quicksort as example.
Resumo:
Dissertação de mestrado integrado em Civil Engineering
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.
Resumo:
The aim of this paper is to predict time series of SO2 concentrations emitted by coal-fired power stations in order to estimate in advance emission episodes and analyze the influence of some meteorological variables in the prediction. An emission episode is said to occur when the series of bi-hourly means of SO2 is greater than a specific level. For coal-fired power stations it is essential to predict emission epi- sodes sufficiently in advance so appropriate preventive measures can be taken. We proposed a meth- odology to predict SO2 emission episodes based on using an additive model and an algorithm for variable selection. The methodology was applied to the estimation of SO2 emissions registered in sampling lo- cations near a coal-fired power station located in Northern Spain. The results obtained indicate a good performance of the model considering only two terms of the time series and that the inclusion of the meteorological variables in the model is not significant.
Resumo:
Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared. This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
"A workshop within the 19th International Conference on Applications and Theory of Petri Nets - ICATPN’1998"
Resumo:
The needs of reducing human error has been growing in every field of study, and medicine is one of those. Through the implementation of technologies is possible to help in the decision making process of clinics, therefore to reduce the difficulties that are typically faced. This study focuses on easing some of those difficulties by presenting real-time data mining models capable of predicting if a monitored patient, typically admitted in intensive care, will need to take vasopressors. Data Mining models were induced using clinical variables such as vital signs, laboratory analysis, among others. The best model presented a sensitivity of 94.94%. With this model it is possible reducing the misuse of vasopressors acting as prevention. At same time it is offered a better care to patients by anticipating their treatment with vasopressors.
Resumo:
Este proyecto propone extender y generalizar los procesos de estimación e inferencia de modelos aditivos generalizados multivariados para variables aleatorias no gaussianas, que describen comportamientos de fenómenos biológicos y sociales y cuyas representaciones originan series longitudinales y datos agregados (clusters). Se genera teniendo como objeto para las aplicaciones inmediatas, el desarrollo de metodología de modelación para la comprensión de procesos biológicos, ambientales y sociales de las áreas de Salud y las Ciencias Sociales, la condicionan la presencia de fenómenos específicos, como el de las enfermedades.Es así que el plan que se propone intenta estrechar la relación entre la Matemática Aplicada, desde un enfoque bajo incertidumbre y las Ciencias Biológicas y Sociales, en general, generando nuevas herramientas para poder analizar y explicar muchos problemas sobre los cuales tienen cada vez mas información experimental y/o observacional.Se propone, en forma secuencial, comenzando por variables aleatorias discretas (Yi, con función de varianza menor que una potencia par del valor esperado E(Y)) generar una clase unificada de modelos aditivos (paramétricos y no paramétricos) generalizados, la cual contenga como casos particulares a los modelos lineales generalizados, no lineales generalizados, los aditivos generalizados, los de media marginales generalizados (enfoques GEE1 -Liang y Zeger, 1986- y GEE2 -Zhao y Prentice, 1990; Zeger y Qaqish, 1992; Yan y Fine, 2004), iniciando una conexión con los modelos lineales mixtos generalizados para variables latentes (GLLAMM, Skrondal y Rabe-Hesketh, 2004), partiendo de estructuras de datos correlacionados. Esto permitirá definir distribuciones condicionales de las respuestas, dadas las covariables y las variables latentes y estimar ecuaciones estructurales para las VL, incluyendo regresiones de VL sobre las covariables y regresiones de VL sobre otras VL y modelos específicos para considerar jerarquías de variación ya reconocidas. Cómo definir modelos que consideren estructuras espaciales o temporales, de manera tal que permitan la presencia de factores jerárquicos, fijos o aleatorios, medidos con error como es el caso de las situaciones que se presentan en las Ciencias Sociales y en Epidemiología, es un desafío a nivel estadístico. Se proyecta esa forma secuencial para la construcción de metodología tanto de estimación como de inferencia, comenzando con variables aleatorias Poisson y Bernoulli, incluyendo los existentes MLG, hasta los actuales modelos generalizados jerárquicos, conextando con los GLLAMM, partiendo de estructuras de datos correlacionados. Esta familia de modelos se generará para estructuras de variables/vectores, covariables y componentes aleatorios jerárquicos que describan fenómenos de las Ciencias Sociales y la Epidemiología.
Resumo:
La programación concurrente es una tarea difícil aún para los más experimentados programadores. Las investigaciones en concurrencia han dado como resultado una gran cantidad de mecanismos y herramientas para resolver problemas de condiciones de carrera de datos y deadlocks, problemas que surgen por el mal uso de los mecanismos de sincronización. La verificación de propiedades interesantes de programas concurrentes presenta dificultades extras a los programas secuenciales debido al no-determinismo de su ejecución, lo cual resulta en una explosión en el número de posibles estados de programa, haciendo casi imposible un tratamiento manual o aún con la ayuda de computadoras. Algunos enfoques se basan en la creación de lenguajes de programación con construcciones con un alto nivel de abstración para expresar concurrencia y sincronización. Otros enfoques tratan de desarrollar técnicas y métodos de razonamiento para demostrar propiedades, algunos usan demostradores de teoremas generales, model-checking o algortimos específicos sobre un determinado sistema de tipos. Los enfoques basados en análisis estático liviano utilizan técnicas como interpretación abstracta para detectar ciertos tipos de errores, de una manera conservativa. Estas técnicas generalmente escalan lo suficiente para aplicarse en grandes proyectos de software pero los tipos de errores que pueden detectar es limitada. Algunas propiedades interesantes están relacionadas a condiciones de carrera y deadlocks, mientras que otros están interesados en problemas relacionados con la seguridad de los sistemas, como confidencialidad e integridad de datos. Los principales objetivos de esta propuesta es identificar algunas propiedades de interés a verificar en sistemas concurrentes y desarrollar técnicas y herramientas para realizar la verificación en forma automática. Para lograr estos objetivos, se pondrá énfasis en el estudio y desarrollo de sistemas de tipos como tipos dependientes, sistema de tipos y efectos, y tipos de efectos sensibles al flujo de datos y control. Estos sistemas de tipos se aplicarán a algunos modelos de programación concurrente como por ejemplo, en Simple Concurrent Object-Oriented Programming (SCOOP) y Java. Además se abordarán propiedades de seguridad usando sistemas de tipos específicos. Concurrent programming has remained a dificult task even for very experienced programmers. Concurrency research has provided a rich set of tools and mechanisms for dealing with data races and deadlocks that arise of incorrect use of synchronization. Verification of most interesting properties of concurrent programs is a very dificult task due to intrinsic non-deterministic nature of concurrency, resulting in a state explosion which make it almost imposible to be manually treat and it is a serious challenge to do that even with help of computers. Some approaches attempts create programming languages with higher levels of abstraction for expressing concurrency and synchronization. Other approaches try to develop reasoning methods to prove properties, either using general theorem provers, model-checking or specific algorithms on some type systems. The light-weight static analysis approach apply techniques like abstract interpretation to find certain kind of bugs in a conservative way. This techniques scale well to be applied in large software projects but the kind of bugs they may find are limited. Some interesting properties are related to data races and deadlocks, while others are interested in some security problems like confidentiality and integrity of data. The main goals of this proposal is to identify some interesting properties to verify in concurrent systems and develop techniques and tools to do full automatic verification. The main approach will be the application of type systems, as dependent types, type and effect systems, and flow-efect types. Those type systems will be applied to some models for concurrent programming as Simple Concurrent Object-Oriented Programming (SCOOP) and Java. Other goals include the analysis of security properties also using specific type systems.