922 resultados para principal component regression
Resumo:
Cannabinoid compounds have widely been employed because of its medicinal and psychotropic properties. These compounds are isolated from Cannabis sativa (or marijuana) and are used in several medical treatments, such as glaucoma, nausea associated to chemotherapy, pain and many other situations. More recently, its use as appetite stimulant has been indicated in patients with cachexia or AIDS. In this work, the influence of several molecular descriptors on the psychoactivity of 50 cannabinoid compounds is analyzed aiming one obtain a model able to predict the psychoactivity of new cannabinoids. For this purpose, initially, the selection of descriptors was carried out using the Fisher`s weight, the correlation matrix among the calculated variables and principal component analysis. From these analyses, the following descriptors have been considered more relevant: E(LUMO) (energy of the lowest unoccupied molecular orbital), Log P (logarithm of the partition coefficient), VC4 (volume of the substituent at the C4 position) and LP1 (Lovasz-Pelikan index, a molecular branching index). To follow, two neural network models were used to construct a more adequate model for classifying new cannabinoid compounds. The first model employed was multi-layer perceptrons, with algorithm back-propagation, and the second model used was the Kohonen network. The results obtained from both networks were compared and showed that both techniques presented a high percentage of correctness to discriminate psychoactive and psychoinactive compounds. However, the Kohonen network was superior to multi-layer perceptrons.
Resumo:
Chemometric methods can contribute to soil research by permitting the extraction of more information from the data. The aim of this work was to use Principal Component Analysis to evaluate data obtained through chemical and spectroscopic methods on the changes in the humification process of soil organic matter from two tropical soils after sewage sludge application. In this case, humic acids extracted from Typic Eutrorthox and Typic Haplorthox soils with and without sewage sludge application for 7 consecutive years were studied. The results obtained for all of the samples and methods showed two clusters: samples extracted from the two soil types. These expected results indicated the textural difference between the two soils was more significant than the differences between treatments (control and sewage sludge application) or between depths. In this case, an individual chemometric treatment was made for each type of soil. It was noted that the characterization of the humic acids extracted from soils with and without sewage sludge application after 7 consecutive years using several methods supplies important results about changes in the humification degree of soil organic matter, These important result obtained by Principal Component Analysis justify further research using these methods to characterize the changes in the humic acids extracted from sewage sludge-amended soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Syftet med föreliggande undersökning var att identifiera faktorer som bidrog till känslan av "yrkesstolthet" hos anställda vid Försäkringskassan Dalarna inkluderande personalens tillfredsställelse med yrkesrollen. Sammanlagt 163 personer, 123 kvinnor och 40 män, från 25 till 66 år (X= 49,8 år) deltog i undersökningen. Denna genomfördes med hjälp av General Nordic Questionnaire for Psychological and Social Factors at Work (QPS Nordic) inkluderande 123 frågor samt 9 frågor gällande yrkesrollen. Frågorna besvarades väsentligen med hjälp av en 5-gradig skala av Likert-typ. Huvudresultatet uträknades med hjälp av Cronbachs Alpha, Principal Component Analysis och multipel regressionsanalys. Det konstaterades att beroendevariabeln "yrkesstolthets" variation förklarades till 62,7% av oberoende-variablerna "interaktionsintelligens" "yrkesrealism", "arbetstillfredsställelse" och "arbetsengagemang". Även kön, ålder, utbildning och yrkeserfarenhet hade betydelse.
Resumo:
OBJECTIVES: To develop a method for objective assessment of fine motor timing variability in Parkinson’s disease (PD) patients, using digital spiral data gathered by a touch screen device. BACKGROUND: A retrospective analysis was conducted on data from 105 subjects including65 patients with advanced PD (group A), 15 intermediate patients experiencing motor fluctuations (group I), 15 early stage patients (group S), and 10 healthy elderly subjects (HE) were examined. The subjects were asked to perform repeated upper limb motor tasks by tracing a pre-drawn Archimedes spiral as shown on the screen of the device. The spiral tracing test was performed using an ergonomic pen stylus, using dominant hand. The test was repeated three times per test occasion and the subjects were instructed to complete it within 10 seconds. Digital spiral data including stylus position (x-ycoordinates) and timestamps (milliseconds) were collected and used in subsequent analysis. The total number of observations with the test battery were as follows: Swedish group (n=10079), Italian I group (n=822), Italian S group (n = 811), and HE (n=299). METHODS: The raw spiral data were processed with three data processing methods. To quantify motor timing variability during spiral drawing tasks Approximate Entropy (APEN) method was applied on digitized spiral data. APEN is designed to capture the amount of irregularity or complexity in time series. APEN requires determination of two parameters, namely, the window size and similarity measure. In our work and after experimentation, window size was set to 4 and similarity measure to 0.2 (20% of the standard deviation of the time series). The final score obtained by APEN was normalized by total drawing completion time and used in subsequent analysis. The score generated by this method is hence on denoted APEN. In addition, two more methods were applied on digital spiral data and their scores were used in subsequent analysis. The first method was based on Digital Wavelet Transform and Principal Component Analysis and generated a score representing spiral drawing impairment. The score generated by this method is hence on denoted WAV. The second method was based on standard deviation of frequency filtered drawing velocity. The score generated by this method is hence on denoted SDDV. Linear mixed-effects (LME) models were used to evaluate mean differences of the spiral scores of the three methods across the four subject groups. Test-retest reliability of the three scores was assessed after taking mean of the three possible correlations (Spearman’s rank coefficients) between the three test trials. Internal consistency of the methods was assessed by calculating correlations between their scores. RESULTS: When comparing mean spiral scores between the four subject groups, the APEN scores were different between HE subjects and three patient groups (P=0.626 for S group with 9.9% mean value difference, P=0.089 for I group with 30.2%, and P=0.0019 for A group with 44.1%). However, there were no significant differences in mean scores of the other two methods, except for the WAV between the HE and A groups (P<0.001). WAV and SDDV were highly and significantly correlated to each other with a coefficient of 0.69. However, APEN was not correlated to neither WAV nor SDDV with coefficients of 0.11 and 0.12, respectively. Test-retest reliability coefficients of the three scores were as follows: APEN (0.9), WAV(0.83) and SD-DV (0.55). CONCLUSIONS: The results show that the digital spiral analysis-based objective APEN measure is able to significantly differentiate the healthy subjects from patients at advanced level. In contrast to the other two methods (WAV and SDDV) that are designed to quantify dyskinesias (over-medications), this method can be useful for characterizing Off symptoms in PD. The APEN was not correlated to none of the other two methods indicating that it measures a different construct of upper limb motor function in PD patients than WAV and SDDV. The APEN also had a better test-retest reliability indicating that it is more stable and consistent over time than WAV and SDDV.
Resumo:
Objective: To develop a method for objective quantification of PD motor symptoms related to Off episodes and peak dose dyskinesias, using spiral data gathered by using a touch screen telemetry device. The aim was to objectively characterize predominant motor phenotypes (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Background: A retrospective analysis was conducted on recordings from 65 patients with advanced idiopathic PD from nine different clinics in Sweden, recruited from January 2006 until August 2010. In addition to the patient group, 10 healthy elderly subjects were recruited. Upper limb movement data were collected using a touch screen telemetry device from home environments of the subjects. Measurements with the device were performed four times per day during week-long test periods. On each test occasion, the subjects were asked to trace pre-drawn Archimedean spirals, using the dominant hand. The pre-drawn spiral was shown on the screen of the device. The spiral test was repeated three times per test occasion and they were instructed to complete it within 10 seconds. The device had a sampling rate of 10Hz and measured both position and time-stamps (in milliseconds) of the pen tip. Methods: Four independent raters (FB, DH, AJ and DN) used a web interface that animated the spiral drawings and allowed them to observe different kinematic features during the drawing process and to rate task performance. Initially, a number of kinematic features were assessed including ‘impairment’, ‘speed’, ‘irregularity’ and ‘hesitation’ followed by marking the predominant motor phenotype on a 3-category scale: tremor, bradykinesia and/or choreatic dyskinesia. There were only 2 test occasions for which all the four raters either classified them as tremor or could not identify the motor phenotype. Therefore, the two main motor phenotype categories were bradykinesia and dyskinesia. ‘Impairment’ was rated on a scale from 0 (no impairment) to 10 (extremely severe) whereas ‘speed’, ‘irregularity’ and ‘hesitation’ were rated on a scale from 0 (normal) to 4 (extremely severe). The proposed data-driven method consisted of the following steps. Initially, 28 spatiotemporal features were extracted from the time series signals before being presented to a Multilayer Perceptron (MLP) classifier. The features were based on different kinematic quantities of spirals including radius, angle, speed and velocity with the aim of measuring the severity of involuntary symptoms and discriminate between PD-specific (bradykinesia) and/or treatment-induced symptoms (dyskinesia). A Principal Component Analysis was applied on the features to reduce their dimensions where 4 relevant principal components (PCs) were retained and used as inputs to the MLP classifier. Finally, the MLP classifier mapped these components to the corresponding visually assessed motor phenotype scores for automating the process of scoring the bradykinesia and dyskinesia in PD patients whilst they draw spirals using the touch screen device. For motor phenotype (bradykinesia vs. dyskinesia) classification, the stratified 10-fold cross validation technique was employed. Results: There were good agreements between the four raters when rating the individual kinematic features with intra-class correlation coefficient (ICC) of 0.88 for ‘impairment’, 0.74 for ‘speed’, 0.70 for ‘irregularity’, and moderate agreements when rating ‘hesitation’ with an ICC of 0.49. When assessing the two main motor phenotype categories (bradykinesia or dyskinesia) in animated spirals the agreements between the four raters ranged from fair to moderate. There were good correlations between mean ratings of the four raters on individual kinematic features and computed scores. The MLP classifier classified the motor phenotype that is bradykinesia or dyskinesia with an accuracy of 85% in relation to visual classifications of the four movement disorder specialists. The test-retest reliability of the four PCs across the three spiral test trials was good with Cronbach’s Alpha coefficients of 0.80, 0.82, 0.54 and 0.49, respectively. These results indicate that the computed scores are stable and consistent over time. Significant differences were found between the two groups (patients and healthy elderly subjects) in all the PCs, except for the PC3. Conclusions: The proposed method automatically assessed the severity of unwanted symptoms and could reasonably well discriminate between PD-specific and/or treatment-induced motor symptoms, in relation to visual assessments of movement disorder specialists. The objective assessments could provide a time-effect summary score that could be useful for improving decision-making during symptom evaluation of individualized treatment when the goal is to maximize functional On time for patients while minimizing their Off episodes and troublesome dyskinesias.
Resumo:
An underwater gas pipeline is the portion of the pipeline that crosses a river beneath its bottom. Underwater gas pipelines are subject to increasing dangers as time goes by. An accident at an underwater gas pipeline can lead to technological and environmental disaster on the scale of an entire region. Therefore, timely troubleshooting of all underwater gas pipelines in order to prevent any potential accidents will remain a pressing task for the industry. The most important aspect of resolving this challenge is the quality of the automated system in question. Now the industry doesn't have any automated system that fully meets the needs of the experts working in the field maintaining underwater gas pipelines. Principle Aim of this Research: This work aims to develop a new system of automated monitoring which would simplify the process of evaluating the technical condition and decision making on planning and preventive maintenance and repair work on the underwater gas pipeline. Objectives: Creation a shared model for a new, automated system via IDEF3; Development of a new database system which would store all information about underwater gas pipelines; Development a new application that works with database servers, and provides an explanation of the results obtained from the server; Calculation of the values MTBF for specified pipelines based on quantitative data obtained from tests of this system. Conclusion: The new, automated system PodvodGazExpert has been developed for timely and qualitative determination of the physical conditions of underwater gas pipeline; The basis of the mathematical analysis of this new, automated system uses principal component analysis method; The process of determining the physical condition of an underwater gas pipeline with this new, automated system increases the MTBF by a factor of 8.18 above the existing system used today in the industry.
Resumo:
Através da utilização de sistemas de controle informatizados, indústrias buscam uma caracterização mais completa de seus processos, gerando, freqüentemente, um grande volume de dados acerca de inúmeras variáveis de desempenho dos processos. Entretanto essa grande massa de dados é subaproveitada, visto que as cartas de controle multivariadas tradicionais, tais como as cartas de Hotelling, MCUSUM e MEWMA não são suficientemente robustas para tratar com um grande número de variáveis correlacionadas, pois foram concebidas para monitorar um número reduzido de variáveis de qualidade do produto final. Diante disso, ferramentas multivariadas mais robustas, que incorporam essas informações, vêm sendo desenvolvidas; dentre estas, destaca-se a Multiway Principal Component Analysis (Análise de Componentes Principais Multidirecionais; ACPM). Neste trabalho, apresenta-se a base teórica para a elaboração de uma carta de controle a partir da estratégia ACPM, para monitoramento on-line de processos em bateladas. Nesses processos, aferições freqüentes de variáveis de processo são disponibilizadas durante a realização de cada batelada. As cartas de controle baseadas em ACPM permitem o tratamento de variáveis autocorrelacionadas, com médias que descrevem trajetórias não lineares se observadas em momentos seqüenciados no tempo. Tais variáveis aparecem com freqüência em processos por bateladas. Uma aplicação das cartas de controle baseadas em ACPM em um sub-processo de produção de borracha para cobertura de pneus ilustra a utilização da ferramenta.
Resumo:
Estado e sociedade brasileiros conviveram em descompasso, nos anos 80. A conseqüência imediata desse fenômeno foi o atendimento insuficiente de necessidades básicas da sociedade, nesse período, com aumento da entropia em vários subsistemas sociais brasileiros, dentre os quais o subsistema de saúde. Nesta tese, trabalhando com dados econômicos, sociais e de saúde, e construindo algumas variáveis-indicadores, confrontou-se, naquele período, necessidades da sociedade com ações do Estado, na área da saúde. Utilizando técnicas estatísticas - análise gráfica, associação estatística dos indicadores selecionados (matriz de correlação de PEARSON), análise em componentes principais, análise de agrupamento e análise de regressão linear múltipla com variáveis logaritímizadas - foi possível visualizar causas e conseqüências dessa alta entropia, caracterizada por desperdício de recursos e várias situações propensas à geração de crises nas organizações, setores e instituições do subsistema de saúde brasileiro. Propõe-se um método de alocação de recursos federais, objetivando minimizar desigualdades entre as Unidades da Federação, a partir de seus desempenhos na área de saúde.
Resumo:
A presente dissertação tem como objeto de estudo a superfície de volatilidade implícita de opções européias da paridade Real / Dólar no mercado brasileiro. Este trabalho não tenta explicar as deformações ou os desvios da volatilidade implícita com relação à hipótese de volatilidade constante do modelo de Black & Scholes (1973), mas trata a volatilidade implícita como uma variável financeira interessante por si só, procurando analisar a dinâmica de sua superfície. Para a análise desta superfície, o presente estudo propõe a utilização de uma ferramenta empregada em estudos empíricos de diversos ramos da ciência: a Análise de Componentes Principais – ACP (Principal Component Analysis). As mudanças na superfície de volatilidade alteram o apreçamento das opções de uma carteira. Desta forma, constituem um fator de risco que precisa ser estudado e entendido para o desenvolvimento de estratégias de imunização e de técnicas de gerenciamento de risco, dentre elas o cálculo de Valor em Risco (V@R – Value at Risk). De posse dos resultados obtidos com a análise de componentes principais da superfície de volatilidade implícita, o presente estudo tem por objetivo obter valores limite de variação desta volatilidade implícita, como forma de estimar as conseqüentes variações extremas nos valores de uma carteira de opções. Para tanto, baseia-se em estudos sobre a aplicação da análise de componentes principais da superfície de volatilidade implícita desenvolvidos por Alexander (2001). Estes estudos, por sua vez, são derivados de estudo sobre a dinâmica de curvas de volatilidade proposto por Derman (1999). Para se verificar a eficiência da metodologia proposta, os valores extremos obtidos são testados de acordo com os critérios de teste retroativo propostos pela emenda ao comitê da Basiléia de 1996.
Resumo:
A abordagem do Value at Risk (VAR) neste trabalho será feita a partir da análise da curva de juros por componentes principais (Principal Component Analysis – PCA). Com essa técnica, os movimentos da curva de juros são decompostos em um pequeno número de fatores básicos independentes um do outro. Entre eles, um fator de deslocamento (shift), que faz com que as taxas da curva se movam na mesma direção, todas para cima ou para baixo; de inclinação (twist) que rotaciona a curva fazendo com que as taxas curtas se movam em uma direção e as longas em outra; e finalmente movimento de torção, que afeta vencimentos curtos e longos no mesmo sentido e vencimentos intermediários em sentido oposto. A combinação destes fatores produz cenários hipotéticos de curva de juros que podem ser utilizados para estimar lucros e perdas de portfolios. A maior perda entre os cenários gerados é uma maneira intuitiva e rápida de estimar o VAR. Este, tende a ser, conforme verificaremos, uma estimativa conservadora do respectivo percentual de perda utilizado. Existem artigos sobre aplicações de PCA para a curva de juros brasileira, mas desconhecemos algum que utilize PCA para construção de cenários e cálculo de VAR, como é feito no presente trabalho.Nesse trabalho, verificaremos que a primeira componente principal produz na curva um movimento de inclinação conjugado com uma ligeira inclinação, ao contrário dos resultados obtidos em curvas de juros de outros países, que apresentam deslocamentos praticamente paralelos.
Resumo:
O objetivo desse artigo é analisar o impacto da política fiscal sobre diversas variáveis macroeconômicas dos EUA. A metodologia do trabalho empírico baseia-se em um modelo VAR estrutural que incorpora fatores latentes (FAVAR) e para o qual desenvolve-se um esquema de identificação específico. Visto que os fatores são estimados por principal components, estes aproximam-se muito das séries observadas de produção industrial e taxa de juros. Como será visto, este resultado é de fundamental importância para a hipótese de identificação e a escolha dos instrumentos do modelo VAR. Por meio das funções de resposta ao impulso analisa-se os efeitos de um aumento do gasto do governo sobre variáveis de produto e consumo e, por sua vez, corroborando a hipótese de que tanto o PIB quanto as despesas de consumo das famílias aumentam depois desse choque exógeno. Em particular esse efeito sobre o consumo também é verificado quando separamos os indivíduos em várias classes de acordo com renda. Olhando cuidadosamente no entanto pode-se perceber que um aumento no gasto público possui mais impacto sobre os consumidores de renda mais baixa. Ou seja, é provável que por estarem sujeitas a restrições de crédito, as classes mais baixas tem mais dificuldade em suavizar o consumo após um choque agregado.
Resumo:
O presente estudo busca analisar a adoção de técnicas de imunização de carteiras para a gestão dos hedges cambiais no ambiente corporativo de uma Trading Company, utilizando de forma pioneira a análise de componentes principais aplicada à curva cambial como uma alternativa aos modelos usualmente utilizados de hedge por exposição gerada (back-to-back) e duration hedge que mostram algumas deficiências em sua gestão. Para exemplificar a efetividade da estratégia de imunização foi gerada aleatoriamente uma carteira de exposição cambial com data base de 02/01/2013 composta por 200 transações com valores entre US$5 milhões e -US$10 milhões, para vencimentos também aleatórios entre 03/06/2013 e 01/12/2014 com vencimento no primeiro dia útil de cada mês. Os resultados da Análise de Componente Principais mostraram que para os períodos analisados de 1, 2 e 3 anos, os três primeiros componentes explicam respectivamente 97.17%, 97.90% e 97.53% da variabilidade da curva cambial. No que diz respeito à imunização da carteira, a estratégia que utiliza a metodologia de componentes principais mostrou-se altamente efetiva, quando comparadas à estratégia back-to-back, de forma a permitir a sua aplicabilidade no ambiente corporativo. A estratégia de hedge utilizando-se da Análise de Componentes Principais para 1, 2 e 3 anos e pelo Duration Hedge apresentaram uma efetividade de, respectivamente, 101.3%, 99.47%, 97.64% e 99.24% para o período analisado e uma amplitude na efetividade diária de 8.62%, 7.79%, 8.45% e 19.21% o que indica uma superioridade da estratégia em relação ao Duration Hedge. Os resultados obtidos nesse trabalho são de grande relevância para a gestão de risco corporativo no mercado local.
Resumo:
Este trabalho observa como as variáveis macroeconômicas (expectativa de inflação, juro real, hiato do produto e a variação cambial) influenciam a dinâmica da Estrutura a Termo da Taxa de Juros (ETTJ). Esta dinâmica foi verificada introduzindo a teoria de Análise de Componentes Principais (ACP) para capturar o efeito das componentes mais relevantes na ETTJ (nível, inclinação e curvatura). Utilizando-se as estimativas por mínimos quadrados ordinários e pelo método generalizado dos momentos, foi verificado que existe uma relação estatisticamente significante entre as variáveis macroeconômicas e as componentes principais da ETTJ.
Resumo:
Com o objetivo de mostrar uma aplicação dos modelos da família GARCH a taxas de câmbio, foram utilizadas técnicas estatísticas englobando análise multivariada de componentes principais e análise de séries temporais com modelagem de média e variância (volatilidade), primeiro e segundo momentos respectivamente. A utilização de análise de componentes principais auxilia na redução da dimensão dos dados levando a estimação de um menor número de modelos, sem contudo perder informação do conjunto original desses dados. Já o uso dos modelos GARCH justifica-se pela presença de heterocedasticidade na variância dos retornos das séries de taxas de câmbio. Com base nos modelos estimados foram simuladas novas séries diárias, via método de Monte Carlo (MC), as quais serviram de base para a estimativa de intervalos de confiança para cenários futuros de taxas de câmbio. Para a aplicação proposta foram selecionadas taxas de câmbio com maior market share de acordo com estudo do BIS, divulgado a cada três anos.
Resumo:
The Forward Premium Puzzle (FPP) is how the empirical observation of a negative relation between future changes in the spot rates and the forward premium is known. Modeling this forward bias as a risk premium and under weak assumptions on the behavior of the pricing kernel, we characterize the potential bias that is present in the regressions where the FPP is observed and we identify the necessary and sufficient conditions that the pricing kernel has to satisfy to account for the predictability of exchange rate movements. Next, we estimate the pricing kernel applying two methods: i) one, du.e to Araújo et aI. (2005), that exploits the fact that the pricing kernel is a serial correlation common feature of asset prices, and ii) a traditional principal component analysis used as a procedure 1;0 generate a statistical factor modeI. Then, using on the sample and out of the sample exercises, we are able to show that the same kernel that explains the Equity Premi um Puzzle (EPP) accounts for the FPP in all our data sets. This suggests that the quest for an economic mo deI that generates a pricing kernel which solves the EPP may double its prize by simultaneously accounting for the FPP.