906 resultados para ponderomotive force
Resumo:
We present a new approach that allows the determination and refinement of force field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on tight coupling between experimentally derived structure factors and computer modelling. By separating the potential into terms representing respectively bond stretching, angle bending and torsional rotation and by treating each of them separately, the various potential parameters are extracted directly from experiment. The procedure is illustrated on molten polytetrafluoroethylene.
Resumo:
We present a new approach that allows the determination of force-field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on a tight coupling between experimentally derived structure factors and computer modelling. We separate the molecular potential into non-interacting terms representing respectively bond stretching, angle bending and torsional rotation. The parameters for each of the potentials are extracted directly from experimental data through comparison of the experimental structure factor and those derived from atomistic level molecular models. The viability of these force fields is assessed by comparison of predicted large-scale features such as the characteristic ratio. The procedure is illustrated on molten poly(ethylene) and poly(tetrafluoroethylene).
Resumo:
An experimental and theoretical comparison is made of force control performance with different types of innerloop joint servoing techniques. The problem of disturbance rejection and sensitivity to plant dynamics variations (robustness) is addressed. Position, velocity, strain gauge derived joint torque, and current servos are designed and implemented on a specially instrumented industrial robot, and the end-effector force feedback performances achieved are compared. Joint strain derived torque servoing is found to provide the best overall robust force control performance. Experimental results of the robust hard-on-hard contact achieved with the novel force controller implementation based on joint torque sensing are provided. Conclusions are drawn on the force control performance achievable on a geared robot given the joint servoing technique.
Resumo:
Food restriction has a great impact on skeletal muscle mass by inducing muscle protein breakdown to provide substrates for energy production through gluconeogenesis. Genetic models of hyper-muscularity interfere with the normal balance between protein synthesis and breakdown which eventually results in extreme muscle growth. Mutations or deletions in the myostatin gene result in extreme muscle mass. Here we evaluated the impact of food restriction for a period of 5 weeks on skeletal muscle size (i.e., fibre cross-sectional area), fibre type composition and contractile properties (i.e., tetanic and specific force) in myostatin null mice. We found that this hyper-muscular model was more susceptible to catabolic processes than wild type mice. The mechanism of skeletal muscle mass loss was examined and our data shows that the myostatin null mice placed on a low calorie diet maintained the activity of molecules involved in protein synthesis and did not up-regulate the expression of genes pivotal in ubiquitin-mediated protein degradation. However, we did find an increase in the expression of genes associated with autophagy. Surprisingly, the reduction on muscle size was followed by improved tetanic and specific force in the null mice compared to wild type mice. These data provide evidence that food restriction may revert the hyper-muscular phenotype of the myostatin null mouse restoring muscle function.
Resumo:
We report the investigation of the mechanical properties of different types of amyloid fibrils by the peak force quantitative nanomechanical (PF-QNM) technique. We demonstrate that this technique correctly measures the Young’s modulus independent of the polymorphic state and the cross-sectional structural details of the fibrils, and we show that values for amyloid fibrils assembled from heptapeptides, a-synuclein, Ab(1–42), insulin, b-lactoglobulin,lysozyme, ovalbumin, Tau protein and bovine serum albumin all fall in the range of 2–4 GPa.
Resumo:
In Britain, substantial cuts in police budgets alongside controversial handling of incidents such as politically sensitive enquiries, public disorder and relations with the media have recently triggered much debate about public knowledge and trust in the police. To date, however, little academic research has investigated how knowledge of police performance impacts citizens’ trust. We address this long-standing lacuna by exploring citizens’ trust before and after exposure to real performance data in the context of a British police force. The results reveal that being informed of performance data affects citizens’ trust significantly. Furthermore, direction and degree of change in trust are related to variations across the different elements of the reported performance criteria. Interestingly, the volatility of citizens’ trust is related to initial performance perceptions (such that citizens with low initial perceptions of police performance react more significantly to evidence of both good and bad performance than citizens with high initial perceptions), and citizens’ intentions to support the police do not always correlate with their cognitive and affective trust towards the police. In discussing our findings, we explore the implications of how being transparent with performance data can both hinder and be helpful in developing citizens’ trust towards a public organisation such as the police. From our study, we pose a number of ethical challenges that practitioners face when deciding what data to highlight, to whom, and for what purpose.
Resumo:
We make use of the Skyrme effective nuclear interaction within the time-dependent Hartree-Fock framework to assess the effect of inclusion of the tensor terms of the Skyrme interaction on the fusion window of the 16O–16O reaction. We find that the lower fusion threshold, around the barrier, is quite insensitive to these details of the force, but the higher threshold, above which the nuclei pass through each other, changes by several MeV between different tensor parametrisations. The results suggest that eventually fusion properties may become part of the evaluation or fitting process for effective nuclear interactions.
Resumo:
The effect of the tensor component of the Skyrme effective nucleon-nucleon interaction on the single-particle structure in superheavy elements is studied. A selection of the available Skyrme forces has been chosen and their predictions for the proton and neutron shell closures investigated. The inclusion of the tensor term with realistic coupling strength parameters leads to a small increase in the spin-orbit splitting between the proton 2f7/2 and 2f5/2 partners, opening the Z=114 shell gap over a wide range of nuclei. The Z=126 shell gap, predicted by these models in the absence of the tensor term, is found to be stongly dependent on neutron number with a Z=138 gap opening for large neutron numbers, having a consequent implication for the synthesis of neutron-rich superheavy elements. The predicted neutron shell structures remain largely unchanged by inclusion of the tensor component.
Resumo:
A fully automated and online artifact removal method for the electroencephalogram (EEG) is developed for use in brain-computer interfacing. The method (FORCe) is based upon a novel combination of wavelet decomposition, independent component analysis, and thresholding. FORCe is able to operate on a small channel set during online EEG acquisition and does not require additional signals (e.g. electrooculogram signals). Evaluation of FORCe is performed offline on EEG recorded from 13 BCI particpants with cerebral palsy (CP) and online with three healthy participants. The method outperforms the state-of the-art automated artifact removal methods Lagged auto-mutual information clustering (LAMIC) and Fully automated statistical thresholding (FASTER), and is able to remove a wide range of artifact types including blink, electromyogram (EMG), and electrooculogram (EOG) artifacts.
Resumo:
Drone strikes are becoming a key feature of the United States’ global military response to nonstate actors, and it has been widely adduced that these strikes have been carried out with the consent of the host states in which such non-state actors reside. This article examines the degree to which assertions of consent (or ‘intervention by invitation’), provided as a justification for drone strikes by the United States in Pakistan, Yemen and Somalia, can be said to accord with international law. First the article provides a broad sketch of the presence of consent in international law. It then analyses in detail the individual elements of consent as provided by Article 20 of the International Law Commission Draft Articles of State Responsibility. These require that consent should be ‘valid’, given by the legitimate government and expressed by an official empowered to do so. These elements will be dealt with individually, and each in turn will be applied to the cases of Pakistan, Yemen and Somalia. Finally, the article will examine the breadth of the exculpatory power of consent, and the extent to which it can preclude the wrongfulness of acts carried out in contravention of international law other than the prohibition of the use of force under Article 2(4) of the Charter of the United Nations.
Resumo:
We assess the corticomuscular coherence (CMC) of the contralateral primary motor cortex and the hand muscles during a finger force-tracking task and explore whether the pattern of finger coordination has an impact on the CMC level. Six healthy subjects (three men and three women) were recruited to conduct the force-tracking tasks comprising two finger patterns, i.e., natural combination of index and middle fingers and unnatural combination of index and middle fingers (i.e., simultaneously producing equal force strength in index and middle finger). During the conducting of the tasks with right index and middle finger, MEG and sEMG signals were recorded from left primary motor cortex (M1) and right flexor digitorum superficialis (FDS), respectively; the contralateral CMC was calculated to assess the neuromuscular interaction. Finger force-tracking tasks of Common-IM only induce beta-band CMC, whereas Uncommon-IM tasks produce CMC in both beta and low-gamma band. Compared to the force-tracking tasks of Common-IM, the Uncommon-IM task is associated with the most intensive contralateral CMC. Our study demonstrated that the pattern of finger coordination had significant impact on the CMC between the contralateral M1 and hand muscles, and more corticomuscular interaction was necessary for unnaturally coordinated finger activities to regulate the fixed neural drive of hand muscles.
Resumo:
In this Letter, we determine the kappa-distribution function for a gas in the presence of an external field of force described by a potential U(r). In the case of a dilute gas, we show that the kappa-power law distribution including the potential energy factor term can rigorously be deduced in the framework of kinetic theory with basis on the Vlasov equation. Such a result is significant as a preliminary to the discussion on the role of long range interactions in the Kaniadakis thermostatistics and the underlying kinetic theory. (C) 2008 Elsevier B.V. All rights reserved.