933 resultados para poly(N-vinyl-2-pyrrolidone)
Resumo:
Poly(β-hydroxybutyrate), (PHB), is a biologically produced, biodegradable thennoplastic with commercial potential. In this work the qualitative and quantitative investigations of the structure and degradation of a previously unstudied, novel, fibrous form of PHB, were completed. This gel-spun PHB fibrous matrix, PHB(FM), which has a similar appearance to cotton wool, possesses a relatively complex structure which combines a large volume with a low mass and has potential for use as a wound scaffolding device. As a result of the intrinsic problems presented by this novel structure, a new experimental procedure was developed to analyze the degradation of the PHB to its monomer hydroxybutyric acid, (HBA). This procedure was used in an accelerated degradation model which accurately monitored the degradation of the undegraded and degraded fractions of a fibrous matrix and the degradation of its PHB component. The in vitro degradation mechanism was also monitored using phase contrast and scanning electron microscopy, differential scanning calorimetry, fibre diameter distributions and Fourier infra-red photoacoustic spectroscopy. The accelerated degradation model was used to predict the degradation of the samples in the physiological model and this provided a clearer picture as to the samples potential biodegradation as medical implantation devices. The degradation of the matrices was characterized by an initial penetration of the degradative medium and weakening of the fibre integrity due to cleavage of the ester linkages, this then led to the physical collapse of the fibres which increased the surface area to volume ratio of the sample and facilitated its degradation. Degradation in the later stages was reduced due to the experimental kinetics, compaction and degradation resistant material, most probably the highly crystalline regions of the PHB. The in vitro degradation of the PHB(FM) was influenced by blending with various polysaccharides, copolymerizing with poly(~-hydroxyvalerate), (PHV), and changes to the manufacturing process. The degradation was also detennined to be faster than that of conventional melt processed PHB based samples. It was concluded that the material factors such as processing, sample size and shape affected the degradation of PHB based samples with the major factor of sample surface area to volume ratio being of paramount importance in determining the degradation of a sample.
Resumo:
This thesis is concerned with the analysis of phospholipids in the tear film and with the synthesis of phospholipids analogous to hydrogels. The work consists of two areas. The first area is the study of the phospholipids in the tear film, their nature and fate. The use of liquid chromatography mass spectrometry determined that the concentration of phospholipids in the tear film was less than previously thought. The analysis of the tear film phospholipids continued with thin layer chromatography. This showed the presence of diacylglycerides (DAGs) in the tear film at relatively high concentrations. The activity of an enzyme, phospholipase C, was found in the tear film. It was hypothesised that the low concentration of phospholipids and high concentrations of DAG in the tear film was due to the action of this enzyme. The second area of study was the synthesis of phospholipids analogous materials for use in ocular and dermal applications for use in ocular and dermal applications.For ocular applications the synthesis involved the use of the monomer N,N-dimethyl-N-(2-acryloylethyl)-N-(3-sulfopropyl) ammonium betaine (SPDA) in combination with 2-hdyroxyethyl methacrylate (HEMA). Charge-balanced membranes were also synthesised using potentially anionic monomers in conjunction with cationic monomers in stoichiometrically equivalent ratios also with HEMA as a commoner. Membranes of SPDA copolymers and charge-balanced copolymers proved to have some properties suitable for ocular applications. The dermal materials consisted of one family of partially hydrated hydrogels synthesised from SPDA in combination with ionic monomers: sodium 2-(acrylamido)-2-methyl propane sulfonate and acrylic acid-bis(3-sulfopropyl)-ester, potassium salt. A second family of partially hydrated hydrogels was synthesised from N-vinyl pyrrolidone in combination with the same ionic monomers. Both of the partially hydrated hydrogels synthesised proved to have some properties suitable for use as adhesives for the skin.
Resumo:
This thesis is concerned with the development of hydrogels that adhere to skin and can be used for topical or trans dermal release of active compounds for therapeutic or cosmetic use. The suitability of a range of monomers and initiator systems for the production of skin adhesive hydro gels by photopolymerisation was explored and an approximate order of monomer reactivity in aqueous solution was determined. Most notably, the increased reactivity of N-vinyl pyrrolidone within an aqueous system, as compared to its low rate of polymerisation in organic solvents, was observed. The efficacy of a series of photoinitiator systems for the preparation of sheet hydrogels was investigated. Supplementary redox and thermal initiators were also examined. The most successful initiator system was found to be Irgacure 184, which is commonly used in commercial moving web production systems that employ photopolymerisation. The influence of ionic and non-ionic monomers, crosslinking systems, water and glycerol on the adhesive and dynamic mechanical behaviour of partially hydrated hydrogel systems was examined. The aim was to manipulate hydrogel behaviour to modify topical and transdermal delivery capability and investigated the possibility of using monomer combinations that would influence the release characteristics of gels by modifying their hydrophobic and ionic nature. The copolymerisation of neutral monomers (N-vinyl pyrrolidone, N,N-dimethyl acrylamide and N-acryloyl morpholine) with ionic monomers (2-acrylamido-2-methylpropane sulphonic acid; sodium salt, and the potassium salt of 3-sulphopropyl acrylate) formed the basis of the study. Release from fully and partially hydrated hydrogels was studied, using model compounds and a non-steroidal anti-inflammatory drug, Ibuprofen. Release followed a common 3-stage kinetic profile that includes an initial burst phase, a secondary phase of approximate first order release and a final stage of infinitesimally slow release such that the compound is effectively retained within the hydrogel. Use of partition coefficients, the pKa of the active and a knowledge of charge-based and polar interactions of polymer and drug were complementary in interpreting experimental results. In summary, drug ionisation, hydrogel composition and external release medium characteristics interact to influence release behaviour. The information generated provides the basis for the optimal design of hydrogels for specific dermal release applications and some understanding of the limitations of these systems for controlled release applications.
Resumo:
The Scintillation Proximity Assay (SPA) is a method that is frequently used to detect and quantify the strength of intermolecular interactions between a biological receptor and ligand molecule in aqueous media. This thesis describes the synthesis of scintillant-tagged-compounds for application in a novel cell-based SPA. A series of 4-functianlised-2,5-diphenyloxazole molecules were synthesised. These 4-functionalised-2,5-diphenyloxazoles were evaluated by Sense Proteomic Ltd. Accordingly, the molecules were evaluated for the ability to scintillate in the presence of ionising radiation. In addition, the molecules were incorporated into liposomal preparations which were subsequently evaluated for the ability to scintillate in the presence of ionising radiation. The optimal liposomal preparation was introduced into the membrane of HeLa cells that were used successfully in a cell-based SPA to detect and quantify the uptake of [14C]methionine. This thesis also describes the synthesis and subsequent polymerisation of novel poly(oxyethylene glycol)-based monomers to form a series of new polymer supports. These Poly(oxyethylene glycol)-polymer (POP) supports were evaluated for the ability to swell and mass-uptake in a variety of solvents, demonstrating that POP-supports exhibit enhanced solvent compatibilities over several commercial resins. The utility of POP-supports in solid-phase synthesis was also demonstrated successfully. The incorporation of (4’-vinyl)-4-benzyl-2,5-diphenyloxazole in varying mole percentage into the monomer composition resulted in the production of chemically functionalised scintillant-containing poly(oxyethylene glycol) polymer (POP-Sc) supports. These materials are compatible with both aqueous and organic solvents and scintillate efficiently in the presence of ionising radiation. The utility of POP-Sc supports in solid-phase synthesis and subsequent in-situ SPA to detect and quantify, in real-time, the kinetic progress of a solid-phase reaction was exemplified successfully.In addition, POP-Sc supports were used successfully both in solid-phase combinatorial synthesis of a peptide nucleic acid (PNA)-library and subsequent screening of this library for the ability to hybridise with DNA, which was labelled with a suitable radio-isotape. This data was used to identify the dependence of the number and position of complimentary codon pairs upon the extent of hybridisation. Finally, a further SPA was used to demonstrate the excellent compatibility of POP-Sc supports for use in the detection and quantification of enzyme assays conducted within the matrix of the POP-Sc support.
Resumo:
Fibre Bragg grating (FBG) sensors have been fabricated in polymer photonic crystal fibre (PCF). Results are presented using two different types of polymer optical fibre (POF); first multimode PCF with a core diameter of 50µm based on poly(methyl methacrylate) (PMMA) and second, endlessly single mode PCF with a core diameter of 6µm based on TOPAS cyclic olefin copolymer. Bragg grating inscription was achieved using a 30mW continuous wave 325nm helium cadmium laser. Both TOPAS and PMMA fibre have a large attenuation of around 1dB/cm in the 1550nm spectral region, limiting fibre lengths to no longer than 10cm. However, both have improved attenuation of under 10dB/m in the 800nm spectral region, thus allowing for fibre lengths to be much longer. The focus of current research is to utilise the increased fibre length, widening the range of sensor applications. The Bragg wavelength shift of a grating fabricated in PMMA fibre at 827nm has been monitored whilst the POF is thermally annealed at 80°C for 7 hours. The large length of POF enables real time monitoring of the grating, which demonstrates a permanent negative Bragg wavelength shift of 24nm during the 7 hours. This creates the possibility to manufacture multiplexed Bragg sensors in POF using a single phase mask in the UV inscription manufacturing. TOPAS holds certain advantages over PMMA including a much lower affinity for water, this should allow for the elimination of cross-sensitivity to humidity when monitoring temperature changes or axial strain, which is a significant concern when using PMMA fibre.
Resumo:
This thesis is concerned with the use of ionic and neutral hydrogels in dermal and ocular applications with particular reference to controlled release applications. The work consists of three interconnected themes.The first area of study is the use of skin adhesive bioelectrode hydrogels as ground plate electrodes for ophthalmic iontophoresis applications. The work provides a basis of understanding the relative contributions made by ionic monomers (such as sodium s-(acrylamide)-2-methyl propane sulphonate and acrylic acid-bis-(3-sulfopropyl-ester, potassium salt) and neutral monomers (such as acryloymorpholine, N,N-dimethylacrylamide and N-vinyl pyrrolidone) to adhesion, rheology and impedance of bioelectrode gels. The general advantage of neutral monomers, which have been used to successfully replace ionic monomers, is that they enable more effective control of independent anion and cation species (for example potassium chloride and sodium chloride) unlike ionic monomers where polymerisation produces an immobile polyanion thus limiting cation mobility. Secondly, release from a completely neutral hydrogel under the influence of mechanical shaking was studied for the case of crosslinked polyvinyl alcohol (PVA) containing low concentration of linear soluble PVA in a contact lens application. The soluble PVA was observed to be eluting by reptation from the lens matrix due to the mechanical action of the eyelid. This process was studied in an in vitro model, which in this research was used as a basis for developing a lens made with enhanced release polymer. The third area of work is related to the factors that control drug release (in particular non-steroidal anti-inflammatory drugs) from a hydrogel matrix. This links both electrotherapy applications, such as transcutaneous electrical nerve stimulation, in which the passive diffusion from the gel could be used in conjunction with enhanced transmission across the dermal surface with passive diffusion from a contact lens matrix and the development of therapeutic contact lenses.
Resumo:
Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.
Resumo:
Synthetic hydrogel polymers were prepared by free radical photopolymerization in aqueous solution of the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (Na-AMPS). Poly(ethylene glycol) diacrylate (PEGDA) and 4,4'-azo-bis(4-cyanopentanoic acid) were used as the crosslinker and UV-photoinitiator, respectively. The effects of varying the Na-AMPS monomer concentration within the range of 30-50% w/v and the crosslinker concentration within the range of 0.1-1.0% mol (relative to monomer) were studied in terms of their influence on water absorption properties. The hydrogel sheets exhibited extremely high swelling capacities in aqueous media which were dependent on monomer concentration, crosslink density, and the ionic strength and composition of the immersion medium. The effects of varying the number-average molecular weight of the PEGDA crosslinker from = 250 to 700 were also investigated. Interestingly, it was found that increasing the molecular weight and therefore the crosslink length at constant crosslink density decreased both the rate of water absorption and the equilibrium water content. Cytotoxicity testing by the direct contact method with mouse fibroblast L929 cells indicated that the synthesized hydrogels were nontoxic. On the basis of these results, it is considered that photopolymerized Na-AMPS hydrogels crosslinked with PEGDA show considerable potential for biomedical use as dressings for partial thickness burns. This paper describes some structural effects which are relevant to their design as biomaterials for this particular application. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Controlled polymerization of 2-chloro-1,3-butadiene using reversible addition–fragmentation chain transfer (RAFT) polymerization has been demonstrated for the first time. 2-Chloro-1,3-butadiene, more commonly known as chloroprene, has significant industrial relevance as a crosslinked rubber, with uses ranging from adhesives to integral automotive components. However, problems surrounding the inherent toxicity of the lifecycle of the thiourea-vulcanized rubber have led to the need for control over the synthesis of poly(2-chloro-1,3-butadiene). To this end, four chain transfer agents in two different solvents have been trialed and the kinetics are discussed. 2-Cyano-2-propylbenzodithioate (CPD) is shown to polymerize 2-chloro-1,3-butadiene in THF, using AIBN as an initiator, with complete control over the target molecular weight, producing polymers with low polydispersities (Mw/Mn < 1.25 in all cases).
Resumo:
Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.
Resumo:
The thermal decomposition behavior of 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE) widely used as flame retardant plastics additive was studied by HRTG and differential scanning calorimetries. It was pyrolysed in inert atmosphere at 240 and 340 °C in isothermal conditions, the decomposition products were collected and investigated by means of IR and GC-MS, most of them are identified. It was found that BTBPE mostly evaporates at 240 °C. The decomposition products at 340°C depend on rate of their removal from the hot reaction zone. Main primary decomposition products found in case of rapid removal are tribromophenol and vinyl tribromophenyl ether. Whereas, prolonged contact with heating zone also produces hydrogen bromide, ethylene bromide, polybrominated vinyl phenyl ethers and diphenyl ethers, and dibenzodioxins. The nature of the identified compounds are in accordance with a molecular and radical pyrolysis reaction pathway. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Ethylene-propylene diene terpolymer (EPDM) was functionalized with glycidyl methacrylate (GMA) during melt processing by free radical grafting with peroxide initiation in the presence and absence of a reactive comonomer trimethylolpropane triacrylate (Tris). Increasing the peroxide concentration resulted in an increase in the GMA grafting yield, albeit the overall grafting level was low and was accompanied by higher degree of crosslinking of EPDM which was found to be the major competing reaction. The presence of Tris in the grafting system gave rise to higher grafting yield produced at a much lower peroxide concentration though the crosslinking reactions remained high but without the formation of GMA-homopolymer in either of the two systems. The use of these functionalized EPDM (f-EPDM) samples with PET as compatibilisers in binary and ternary blends of PET/EPDM/f-EPDM was evaluated. The influence of the different functionalisation routes of the rubber phase (in presence and absence of Tris) and the effect of the level of functionality and microstructure of the resultant f-EPDM on the extent of the interfacial reaction, morphology and mechanical properties was also investigated. It is suggested that the mechanical properties of the blends are strongly influenced by the performance of the graft copolymer, which is in turn, determined by the level of functionality, molecular structure of the functionalized rubber and the interfacial concentration of the graft copolymer across the interface. The cumulative evidence obtained from torque rheometry, scanning electron microscopy, SEM, dynamic mechanical analysis (DMA), tensile mechanical tests and Fourier transform infrared (FTIR) supports this. It was shown that binary and ternary blends prepared with f-EPDM in the absence of Tris and containing lower levels of g-GMA effected a significant improvement in mechanical properties. This increase, particularly in elongation to break, could be accounted for by the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET that would result in a graft copolymer which could, most probably, preferentially locate at the interface, thereby acting as an 'emulsifier' responsible for decreasing the interfacial tension between the otherwise two immiscible phases. This is supported by results from FTIR analysis of the fractionated PET phase of these blends which confirm the formation of an interfacial reaction, DMA results which show a clear shift in the T s of the blend components and SEM results which reveal very fine morphology, suggesting effective compatibilisation that is concomitant with the improvement observed in their tensile properties. Although Tris has given rise to highest amount of g-GMA, it resulted in lower mechanical properties than the optimized blends produced in the absence of Tris. This was attributed to the difference in the microstructure of the graft and the level of functionality in these samples resulting in less favourable structure responsible for the coarser dispersion of the rubber phase observed by SEM, the lower extent of T shift of the PET phase (DMA), the lower height of the torque curve during reactive blending and FTIR analysis of the separated PET phase that has indicated a lower extent of the interfacial chemical reaction between the phases in this Tris-containing blend sample. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Poly(L-lactide-co-ε-caprolactone) 75:25% mol, P(LL-co-CL), was synthesized via bulk ring-opening polymerisation (ROP) using a novel tin(II)alkoxide initiator, [Sn(Oct)]2DEG, at 130oC for 48 hrs. The effectiveness of this initiator was compared withthe well-known conventional tin(II) octoateinitiator, Sn(Oct)2. The P(LL-co-CL) copolymersobtained were characterized using a combination of analytical technique including: nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and gel permeation chromatography (GPC). The P(LL-co-CL) was melt-spun into monofilament fibres of uniform diameter and smooth surface appearance. Modification of the matrix morphology was then built into the as-spun fibresvia a series of controlled off-line annealing and hot-drawing steps. © (2014) Trans Tech Publications, Switzerland.
Resumo:
Tactile sensors are needed for many emerging robotic and telepresence applications such as keyhole surgery and robot operation in unstructured environments. We have proposed and demonstrated a tactile sensor consisting of a fibre Bragg grating embedded in a polymer "finger". When the sensor is placed in contact with a surface and translated tangentially across it measurements on the changes in the reflectivity spectrum of the grating provide a measurement of the spatial distribution of forces perpendicular to the surface and thus, through the elasticity of the polymer material, to the surface roughness. Using a sensor fabricated from a Poly Siloxane polymer (Methyl Vinyl Silicone rubber) spherical cap 50 mm in diameter, 6 mm deep with an embedded 10 mm long Bragg grating we have characterised the first and second moment of the grating spectral response when scanned across triangular and semicircular periodic structures both with a modulation depth of 1 mm and a period of 2 mm. The results clearly distinguish the periodicity of the surface structure and the differences between the two different surface profiles. For the triangular structure a central wavelength modulation of 4 pm is observed and includes a fourth harmonic component, the spectral width is modulated by 25 pm. Although crude in comparison to human senses these results clearly shown the potential of such a sensor for tactile imaging and we expect that with further development in optimising both the grating and polymer "finger" properties a much increased sensitivity and spatial resolution is achievable.
Resumo:
New polymerisable photoluminescent octahedral rhenium cluster complexes trans-[{Re6Q8}(TBP)4(VB)2] (Q = S or Se; TBP-p-tert-butylpyridine; VB-vinyl benzoate) have been synthesised, characterised and used to construct rhenium cluster-organic polymer hybrid materials. These novel polymer systems are solution-processable and the rhenium clusters retain their photoluminescent properties within the polymer environment. Notably, when the rhenium cluster complexes are incorporated into the matrix of the electroluminescent polymer poly(N-vinylcarbazole), the resultant cluster polymer hybrid combined properties of both components and was used successfully in the construction of a polymer light emitting diode (PLED). These prototype devices are the first PLEDs to incorporate octahedral rhenium clusters and provide the first direct evidence of the electroluminescent properties of rhenium clusters and indeed, to the best of our knowledge, of any member of the family of 24-electron hexanuclear cluster complexes of molybdenum, tungsten or rhenium.