931 resultados para plumifer species group
Resumo:
The knowledge of the distributional patterns of saproxylic beetles is essential for conservation biology due to the relevance of this fauna in the maintenance of ecological processes and the endangerment of species. The complex community of saproxylic beetles is shaped by different assemblages that are composed of species linked by the microhabitats they use. We evaluate how different the species distribution patterns that are obtained can be, depending on the analyzed assemblage and to what extent these can affect conservation decisions. Beetles were sampled using hollow emergence and window traps in three protected areas of the Iberian Peninsula. Species richness, composition, and diversity turnover were analyzed for each sampling method and showed high variation depending on the analyzed assemblage. Beta diversity was clearly higher among forests for the assemblage captured using window traps. This method collects flying insects from different tree microhabitats and its captures are influenced by the forest structuring. Within forests, the assemblages captured by hollow emergence traps, which collect the fauna linked to tree hollows, showed the largest turnover of species, as they are influenced by the characteristics of each cavity. Moreover, the selection of the forest showing the highest species richness strongly depended on the studied assemblage. This study demonstrates that differences in the studied assemblages (group of species co-occurring in the same habitat) can also lead to significant differences in the identified patterns of species distribution and diversity turnover. This fact will be necessary to take into consideration when making decisions about conservation and management.
Resumo:
In total, ca. 7000 zooplanktonic species have been described for the World Ocean. This figure represents less than 4% of the total number of known marine organisms. Of the 7000 zooplanktonic species world-wide, some 60% are present in the South Atlantic; about one third of the latter have been recorded in its Subantarctic waters, and ca. 20% south of the Polar Front. When compared with those of benthic animals, these figures indicate that proportions of the overall inventories that are present in the cold waters are almost two times higher among the zooplankton. In agreement with this pattern, the proportions of Antarctic endemics in the benthos are very significantly higher than those in the plankton. For the water-column dwelling animals, the Polar Front boundary is more important than the Tropical-Subtropical limit, but almost equivalent to the Subtropical-Transitional limit, and weaker in biogeographic terms than the Transitional-Subantarctic boundary. Some of the implications of these dissimilarities, both for ecological theory and for resource allocation strategies, are discussed.
Resumo:
Members of the calcareous nannofossil genus Discoaster have been used extensively to subdivide Tertiary deep-sea sediments into biostratigraphic zones or subzones (e.g., Martini, 1971; Bukry, 1973). Haq and Lohmann (1976) mapped biogeographic migrations of this group through time and over latitude. They suggested that expansions and contractions of Discoaster-dominated assemblages across latitudes reflect sea-surface temperature changes. Subsequently, late Pliocene Discoaster species were counted at closely spaced sample intervals from various Atlantic sites (Backman et al., 1986; Backman and Pestiaux, 1987; Chepstow-Lusty et al., 1989, 1991), and Indian Ocean as well as Pacific Ocean sites (Chepstow-Lusty, 1990). In addition to the biostratigraphic information revealing positions and the precision by which the different late Pliocene Discoaster species can be determined, these studies also demonstrated that discoasters strongly fluctuate in abundance as a function of time. These abundance variations occur in equatorial as well as temperate temperature regimes, and show periodicities that reflect orbital frequencies. Chepstow-Lusty et al. (1989, 1991) also suggested that the oscillating abundances partly represent productivity pressure, because discoasters tend to show low abundances under high productivity conditions and vice versa. In the Pacific Ocean, counts showing late Pliocene Discoaster abundances exist from three sites, namely Ocean Drilling Program (ODP) Site 677 in the eastern equatorial upwelling region, Core V28-179 from the central equatorial region, and Core V32-127 from the mid-latitude Hess Rise. The two Vema cores are condensed and show sedimentation rates below 0.5 cm/1000 yr, thus offering a poorly resolved stratigraphy. Hole 806C from the Ontong Java Plateau provided an opportunity to establish a highly resolved Discoaster record from the western extreme of the equatorial Pacific under an environmental setting that differed from ODP Site 677 by being less influenced by intense upwelling. The Discoaster counting technique is described by Backman and Shackleton (1983).
Resumo:
The structure and distribution of the macrobenthic communities were studied in the southwestern Kara Sea. The material was collected in Baidaratskaya Bay in July 2007 and in a section running westward of the Yamal Peninsula in September 2007. The depths of the sampling stations ranged from 5 to 25 m in the Baidaratskaya Bay area and between 16 and 46 m in the Yamal section. A total of 212 benthic invertebrate species were recorded. In both areas, Bivalvia was the group with the highest biomass (54.88 g/m**2 in the Yamal section and 59.71 g/m**2 in the Baidaratskaya Bay area), while polychaetes were the group with the highest number of species (45 in the Yamal section and 64 the Baidaratskaya Bay area). Three major macrozoobenthic communities were recognized: the Astarte borealis community (20-46 m, the deepest sampling stations in both areas); the 'medium-depth' community (10-20 m, extremely mosaic, usually dominated by Serripes groenlandicus); and the Nephtys longosetosa community (depth smaller than 10 m, characterized by low biomass and the absence of large bivalves and echinoderms). The western Yamal shallow-water communities were shown to be generally similar to those of Baidaratskaya Bay. The comparison of these results with those of the benthos censuses performed in 1927-1945, 1975, and 1993 showed that the benthic communities in the southwestern Kara Sea remained relatively stable during the second half of the 20th century and the early 21st century.
Resumo:
Includes bibliographical references and indexes.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Aim: The aim of this study was to characterize the bacterial community adhering to the mucosa of the terminal ileum, and proximal and distal colon of the human digestive tract. Methods and Results: Pinch samples of the terminal ileum, proximal and distal colon were taken from a healthy 35-year-old, and a 68-year-old subject with mild diverticulosis. The 16S rDNA genes were amplified using a low number of PCR cycles, cloned, and sequenced. In total, 361 sequences were obtained comprising 70 operational taxonomic units (OTU), with a calculated coverage of 82.6%. Twenty-three per cent of OTU were common to the terminal ileum, proximal colon and distal colon, but 14% OTU were only found in the terminal ileum, and 43% were only associated with the proximal or distal colon. The most frequently represented clones were from the Clostridium group XIVa (24.7%), and the Bacteroidetes (Cytophaga-Flavobacteria-Bacteroides ) cluster (27.7%). Conclusion: Comparison of 16S rDNA clone libraries of the hindgut across mammalian species confirms that the distribution of phylogenetic groups is similar irrespective of the host species. Lesser site-related differences within groups or clusters of organisms, are probable. Significance and Impact: This study provides further evidence of the distribution of the bacteria on the mucosal surfaces of the human hindgut. Data contribute to the benchmarking of the microbial composition of the human digestive tract.
Resumo:
A description of Anopheles (Cellia) irenicus Schmidt, sp.n. (formerly A. farauti No. 7) is provided. This species is one of six recorded from the Solomon Islands within the A. punctulatus group, which contains the major vectors of the causative agents of malaria and lymphatic filariasis in the southwest Pacific. Morphological markers are described for adult females, fourth-instar larvae and pupae that identify most specimens of A. irenicus. Keys are presented to distinguish members of the A. punctulatus group in the Solomon Islands.
Resumo:
The nature and extent of reproductive isolation was examined between a new self-compatible hybrid species Senecio eboracensis (2n = 40) and its parents, self-incompatible S. squalidus (2n = 20) and self-compatible S. vulgaris (2n = 40). The triploid F-1 of S. eboracensis x S. squalidus exhibited very low seed set ((x) over bar = 0.63%), and F-2 and F-3 progeny were able to recover nominal levels of fertility ((x) over bar = 23.9 and 9.7%), while F-1 and F-2 offspring of S. eboracensis x S. vulgaris showed reduced seed set ((x) over bar = 63.8 and 58.8%). In both cases, evidence from previous work indicates that reduced fertility is associated with meiotic chromosome mispairing, and is a likely consequence of recombining both parental genomes within this new taxon. No hybrid offspring between S. eboracensis and S. squalidus were found in the wild, and only one such hybrid was recorded among 769 progeny produced by S. eboracensis surrounded by S. squalidus on an experimental plot. Natural crossing between S. eboracensis and S. vulgaris was recorded to be very low (between 0 and 1.46%) in the wild, but rose to 18.3% when individuals of S. eboracensis were surrounded by plants of S. vulgaris. It was concluded that strong breeding barriers exist between the new hybrid species and its two parents. Prezygotic isolation between S. eboracensis and S. vulgaris is likely to be largely due to both species reproducing by predominant self-fertilisation. However, differences recorded for germination, seedling survival, time of flowering and characters associated with pollinator attraction, plus significant clumping of juvenile and adult conspecifics in the wild, probably also contribute to reproductive isolation and ecological differentiation.
Resumo:
Many models have been advanced to suggest how different expressions of sociality have evolved and are maintained. However these models ignore the function of groups for the particular species in question. Here we present a new perspective on sociality where the function of the group takes a central role. We argue that sociality may have primarily a reproductive, protective, or foraging function, depending on whether it enhances the reproductive, protective or foraging aspect of the animal's life (sociality may serve a mixture of these functions). Different functions can potentially cause the development of the same social behaviour. By identifying which function influences a particular social behaviour we can determine how that social behaviour will change with changing conditions, and which models are most pertinent. To test our approach we examined spider sociality, which has often been seen as the poor cousin to insect sociality. By using our approach we found that the group characteristics of eusocial insects is largely governed by the reproductive function of their groups, while the group characteristics of social spiders is largely governed by the foraging function of the group. This means that models relevant to insects may not be relevant to spiders. It also explains why eusocial insects have developed a strict caste system while spider societies are more egalitarian. We also used our approach to explain the differences between different types of spider groups. For example, differences in the characteristics of colonial and kleptoparasitic groups can be explained by differences in foraging methods, while differences between colonial and cooperative spiders can be explained by the role of the reproductive function in the formation of cooperative spider groups. Although the interactions within cooperative spider colonies are largely those of a foraging society, demographic traits and colony dynamics are strongly influenced by the reproductive function. We argue that functional explanations help to understand the social structure of spider groups and therefore the evolutionary potential for speciation in social spiders.
Resumo:
The diversity of the culturable microbial communities was examined in two sponge species-Pseudoceratina clavata and Rhabdastrella globostellata. Isolates were characterized by 16S rRNA gene sequencing and phylogenetic analysis. The bacterial community structures represented in both sponges were found to be similar at the phylum level by the same four phyla in this study and also at a finer scale at the species level in both Firmicutes and Alphaproteobacteria. The majority of the Alphaproteobacteria isolates were most closely related to isolates from other sponge species including alpha proteobacterium NW001 sp. and alpha proteobacterium MBIC3368. Members of the low %G + C gram-positive (phylum Firmicutes), high %G + C gram-positive (phylum Actinobacteria), and Cytophaga-Flavobacterium-Bacteroides (phylum Bacteroidetes) phyla of domain Bacteria were also represented in both sponges. In terms of culturable organisms, taxonomic diversity of the microbial community in the two sponge species displays similar structure at phylum level. Within phyla, isolates often belonged to the same genus-level monophyletic group. Community structure and taxonomic composition in the two sponge species P. clavata and Rha. globostellata share significant features with those of other sponge species including those from widely separated geographical and climatic regions of the sea.
Resumo:
Pollen and starch residue analyses were conducted on 24 sediment samples from archaeological sites on Maloelap and Ebon Atolls in the Marshall Islands, eastern Micronesia, and Henderson and Pitcairn Islands in the Pitcairn Group, Southeast Polynesia. The sampled islands, two of which are mystery islands (Henderson and Pitcairn), previously occupied and abandoned before European contact, comprise three types of Pacific islands: low coral atolls, raised atolls, and volcanic islands. Pollen, starch grains, calcium oxylate crystals, and xylem cells of introduced non-Colocasia Araceae (aroids) were identified in the Marshalls and Henderson (ca. 1,900 yr B.P. and 1,200 yr B.P. at the earliest, respectively). The data provide direct evidence of prehistoric horticulture in those islands and initial fossil pollen sequences from Pitcairn Island. Combined with previous studies, the data also indicate a horticultural system on Henderson comprising both field and tree crops, with seven different cultigens, including at least two species of the Araceae. Starch grains and xylem cells of Ipomoea sp., possibly introduced 1. batatas, were identified in Pitcairn Island deposits dated to the last few centuries before European contact in 1790.