937 resultados para platform switching
Resumo:
We have investigated the nanoscale switching properties of strain-engineered BiFeO(3) thin films deposited on LaAlO(3) substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicates that the nearly tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy, we provide clear evidence of ferroelectric switching of the tetragonal phase, but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material, which is promising for a plethora of applications.
Resumo:
Dynamic switching spectroscopy piezoresponse force microscopy is developed to separate thermodynamic and kinetic effects in local bias-induced phase transitions. The approaches for visualization and analysis of five-dimensional data are discussed. The spatial and voltage variability of relaxation behavior of the a-c domain lead zirconate-titanate surface suggest the interpretation in terms of surface charge dynamics. This approach is applicable to local studies of dynamic behavior in any system with reversible bias-induced phase transitions ranging from ferroelectrics and multiferroics to ionic systems such as batteries, fuel cells, and electroresistive materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590919]
Resumo:
Frustration – the inability to simultaneously satisfy all interactions – occurs in a wide range of systems including neural networks, water ice and magnetic systems. An example of the latter is the so called spin-ice in pyrochlore materials [1] which have attracted a lot of interest not least due to the emergence of magnetic monopole defects when the ‘ice rules’ governing the local ordering breaks down [2]. However it is not possible to directly measure the frustrated property – the direction of the magnetic moments – in such spin ice systems with current experimental techniques. This problem can be solved by instead studying artificial spin-ice systems where the molecular magnetic moments are replaced by nanoscale ferromagnetic islands [3-8]. Two different arrangements of the ferromagnetic islands have been shown to exhibit spin ice behaviour: a square lattice maintaining four moments at each vertex [3,8] and the Kagome lattice which has only three moments per vertex but equivalent interactions between them [4-7]. Magnetic monopole defects have been observed in both types of lattices [7-8]. One of the challenges when studying these artificial spin-ice systems is that it is difficult to arrive at the fully demagnetised ground-state [6-8].
Here we present a study of the switching behaviour of building blocks of the Kagome lattice influenced by the termination of the lattice. Ferromagnetic islands of nominal size 1000 nm by 100 nm were fabricated in five island blocks using electron-beam lithography and lift-off techniques of evaporated 18 nm Permalloy (Ni80Fe20) films. Each block consists of a central island with four arms terminated by a different number and placement of ‘injection pads’, see Figure 1. The islands are single domain and magnetised along their long axis. The structures were grown on a 50 nm thick electron transparent silicon nitride membrane to allow TEM observation, which was back-coated with a 5 nm film of Au to prevent charge build-up during the TEM experiments.
To study the switching behaviour the sample was subjected to a magnetic field strong enough to magnetise all the blocks in one direction, see Figure 1. Each block obeys the Kagome lattice ‘ice-rules’ of “2-in, 1-out” or “1-in, 2-out” in this fully magnetised state. Fresnel mode Lorentz TEM images of the sample were then recorded as a magnetic field of increasing magnitude was applied in the opposite direction. While the Fresnel mode is normally used to image magnetic domain structures [9] for these types of samples it is possible to deduce the direction of the magnetisation from the Lorentz contrast [5]. All images were recorded at the same over-focus judged to give good Lorentz contrast.
The magnetisation was found to switch at different magnitudes of the applied field for nominally identical blocks. However, trends could still be identified: all the blocks with any injection pads, regardless of placement and number, switched the direction of the magnetisation of their central island at significantly smaller magnitudes of the applied magnetic field than the blocks without injection pads. It can therefore be concluded that the addition of an injection pad lowers the energy barrier to switching the connected island, acting as a nucleation site for monopole defects. In these five island blocks the defects immediately propagate through to the other side, but in a larger lattice the monopoles could potentially become trapped at a vertex and observed [10].
References
[1] M J Harris et al, Phys Rev Lett 79 (1997) p.2554.
[2] C Castelnovo, R Moessner and S L Sondhi, Nature 451 (2008) p. 42.
[3] R F Wang et al, Nature 439 (2006) 303.
[4] M Tanaka et al, Phys Rev B 73 (2006) 052411.
[5] Y Qi, T Brintlinger and J Cumings, Phys Rev B 77 (2008) 094418.
[6] E Mengotti et al, Phys Rev B 78 (2008) 144402.
[7] S Ladak et al, Nature Phys 6 (2010) 359.
[8] C Phatak et al, Phys Rev B 83 (2011) 174431.
[9] J N Chapman, J Phys D 17 (1984) 623.
[10] The authors gratefully acknowledge funding from the EPSRC under grant number EP/D063329/1.
Resumo:
Soil food webs are characterised by complex direct and indirect effects among the organisms. Consumption of microorganisms by soil animals is considered as an important factor that contributes to the stability of communities, though cascading effects within the food web can be difficult to detect. In a greenhouse experiment, an addition of a high number the fungal feeding collembola Folsomia quadrioculata was applied to grassland soil food webs in monocultures of three plant species: Plantago lanceolato (forb), Lotus corniculatus (legume) and Holcus lanatus (grass). The abundance of microorganisms, determined as the abundances of phospholipid fatty acids (PLFAs) and the abundances of resident invertebrates, nematodes and collembolans, did not change due to the addition of E quadrioculata. Trophic positions of collembolans were determined by analyses of natural abundances of N-15 stable isotopes. The use of food resources by microorganisms and collembolans was determined by C-13 analysis of microbial PLFAs and solid samples of collembolans. delta C-13 values of the resident collembola Folsomia fimetaria were lower in the presence of E quadrioculata than in the control food webs indicating a use of more depleted C-13 food resources by E fimetaria. The delta N-15 values of E fimetaria did not change at the addition of E quadrioculata thus no change of trophic levels was detected. The switch of E fimetaria to a different food resource could be due to indirect interactions in the food web as the two collembolan species were positioned on different trophic positions, according to different delta N-15 values. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Diazacoronand 2 undergoes drastic conformational switching upon binding sodium ions as demonstrated by solution- and solid-state studies, which permit the design of efficient fluorescent PET (photoinduced electron transfer) switches 3a,b.
Resumo:
Several logic gates and switches can be accessed from two different combinations of a single set of fluorophore, receptor and spacer components.
Resumo:
A flexible panel consisting of 38 informative microsatellite markers for Salmo trutta is described. These markers were selected from a pool of over 150 candidate loci that can be readily amplified in four multiplex PCR groups but other permutations are also possible. The basic properties of each markers were assessed in six population samples from both the Burrishoole catchment, in the west of Ireland, and Lough Neagh, in Northern Ireland. A method to assess the relative utility of individual markers for the detection of population genetic structuring is also described. Given its flexibility, technical reliability and high degree of informativeness, the use of this panel of markers is advocated as a standard for S. trutta genetic studies. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.
Resumo:
Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching.
Resumo:
Atomic force microscopy (AFM), conductive AFM and electrochemical strain microscopy were used to study the topography change at the defect surface of SrTiO3:N, breakdown in the electrical conduction of the tip/sample/electrode system and ionic motion. The IV curves show resistance switching behavior in a voltage range ±6 V < U <± 10 V and a current of maximum ±10 nA. A series of sweeping IV curves resulted in an increase in ionically polarized states (surface charging), electrochemical volume (surface deformations) and sequential formations of stable surface protrusions. The surface deformations are reversible (U <± 5 V) without IVpinched hysteresis and remained stable during the resistance switching (U >± 6 V), revealing the additional necessity (albeit insufficient due to 50% yield of working cells) of surface protrusion formation for resistance switching memory.
Resumo:
We report a first study of brain activity linked to task switching in individuals with Prader-Willi syndrome (PWS) PWS individuals show a specific cognitive deficit in task switching which may be associated with the display of temper outbursts and repetitive questioning The performance of participants with PWS and typically developing controls was matched in a cued task switching procedure and brain activity was contrasted on switching and non switching blocks using SARI Individuals with PWS did not show the typical frontal-parietal pattern of neural activity associated with switching blocks, with significantly reduced activation in regions of the posterior parietal and ventromedial prefrontal cortices We suggest that this is linked to a difficulty in PWS in setting appropriate attentional weights to enable task set reconfiguration In addition to this, PWS individuals did not show the typical pattern of deactivation, with significantly less deactivation in an anterior region of the ventromedial prefrontal cortex One plausible explanation for this is that individuals with PWS show dysfunction within the default mode network which has been linked to attentional control The data point to functional changes in the neural circuitry supporting task switching in PWS even when behavioural performance is matched to controls and thus highlight neural mechanisms that may be involved in a specific pathway between genes cognition and behaviour (C) 2010 Elsevier B V All rights reserved
Resumo:
Prader-Willi syndrome (PWS) and Fragile X syndrome (FraX) are associated with distinctive cognitive and behavioural profiles. We examined whether repetitive behaviours in the two syndromes were associated with deficits in specific executive functions. PWS, FraX, and typically developing (TD) children were assessed for executive functioning using the Test of Everyday Attention for Children and an adapted Simon spatial interference task. Relative to the TD children, children with PWS and FraX showed greater costs of attention switching on the Simon task, but after controlling for intellectual ability, these switching deficits were only significant in the PWS group. Children with PWS and FraX also showed significantly increased preference for routine and differing profiles of other specific types of repetitive behaviours. A measure of switch cost from the Simon task was positively correlated to scores on preference for routine questionnaire items and was strongly associated with scores on other items relating to a preference for predictability. It is proposed that a deficit in attention switching is a component of the endophenotypes of both PWS and FraX and is associated with specific behaviours. This proposal is discussed in the context of neurocognitive pathways between genes and behaviour.