822 resultados para ordered vector spaces
Resumo:
Ordered graphite nanofibre formation has been observed at exceptionally low temperatures on admission of ethyne to zeolite Y, which had been exchanged with Ni(II). The samples have been characterised by TEM, carbon analysis, and electronic spectroscopy. Formation of the nanofibres requires no hydrogen, and was not observed when cation exchange was carried out at acidic pH. The observed fibres resemble herring-bone nanofibrils, growing from nickel particles, and ca. 90% have diameters in the range 35-40 nm. Similar fibres have also been grown using nickel-exchanged zeolite beta.
Resumo:
Ordered nano-structured MCM-48 silica containing sodium peroxydisulfate is a novel, highly effective material for the decomposition of HCN under ambient conditions.
Resumo:
Tungsten carbide/oxide particles have been prepared by the gel precipitation of tungstic acid in the presence of an organic gelling agent [10% ammonium poly(acrylic acid) in water, supplied by Ciba Specialty Chemicals]. The feed solution; a homogeneous mixture of sodium tungstate and ammonium poly(acrylic acid) in water, was dropped from a 1-mm jet into hydrochloric acid saturated hexanol/concentrated hydrochloric acid to give particles of a mixture of tungstic acid and poly(acrylic acid), which, after drying in air at 100 degrees C and heating to 900 degrees C in argon for 2 h, followed by heating in carbon dioxide for a further 2 h and cooling, gives a mixture of WO, WC, and a trace of NaxWO3, with the carbon for the formation of WC being provided by the thermal carbonization of poly(acrylic acid). The pyrolyzed product is friable and easily broken down in a pestle and mortar to a fine powder or by ultrasonics, in water, to form a stable colloid. The temperature of carbide formation by this process is significantly lower (900 degrees C) than that reported for the commercial preparation of tungsten carbide, typically > 1400 degrees C. In addition, the need for prolonged grinding of the constituents is obviated because the reacting moieties are already in intimate contact on a molecular basis. X-ray diffraction, particle sizing, transmission electron microscopy, surface area, and pore size distribution studies have been carried out, and possible uses are suggested. A flow diagram for the process is described.
Resumo:
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
In this work we describe the synthesis of a variety of MCM-41 type hexagonal and SBA-1 type cubic mesostructures and mesoporous silicious materials employing a novel synthesis concept based on polyacrylic acid (Pac)-C(n)TAB complexes as backbones of the developing structures. The ordered porosity of the solids was established by XRD and TEM techniques. The synthesis concept makes use of Pac-C(n)TAB nanoassemblies as a preformed scaffold, formed by the gradual increase of pH. On this starting matrix the inorganic precursor species SiO2 precipitate via hydrolysis of TEOS under the influence of increasing pH. The molecular weight (MW) of Pac, as well as the length of carbon chain in C,TAB, determine the physical and structural characteristics of the obtained materials. Longer chain surfactants (C(16)TAB) lead to the formation of hexagonal phase, while shorter chain surfactants (C(14)TAB, C(12)TAB) favor the SBA-1 phase. Lower MW of Pac (approximate to2000) leads to better-organized structures compared to higher MW ( 450,000), which leads to worm-like mesostructures. Cell parameters and pore size increase with increasing polyelectrolyte and/or surfactant chain, while at the same time SEM photography reveals that the particle size decreases. Conductivity experiments provide some insight into the proposed self-assembling pathway. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
This paper presents the results of performance monitoring under real winter weather conditions, controlled laboratory testing and computational fluid dynamics (CFD) analysis of a wall mounted ventilation air inlet heat convector. For real winter weather monitoring, the wall-mounted convector was installed in a laboratory room of the Engineering Building of the School of Construction Management and Engineering. Air and hot water temperatures and air speeds were measured at the entrance to the convector and in the room. The hot water temperature was controlled at 40, 60 and 80 °C. The monitoring results were later used as boundary conditions for a CFD simulation to investigate the air movement in the room. Controlled laboratory testing was conducted in laboratories at the University of Reading, UK and at Wetterstad Consultancy, Sweden. The results of the performance investigation showed that the system contributed greatly to the room heating, particularly at a water temperature of 80 °C. Also adequate fresh air was supplied to the room. Such a system is able to provide an energy efficient method of eliminating problems associated with cold winter draughts.
Resumo:
The content of this paper is a snapshot of a current project looking at producing a real-time sensor-based building assessment tool, and a system that personalises workspaces using multi-agent technology. Both systems derive physical environment information from a wireless sensor network that allows clients to subscribe to real-time sensed data. The principal ideologies behind this project are energy efficiency and well-being of occupants; in the context of leveraging the current state-of-the-art in agent technology, wireless sensor networks and building assessment systems to enable the optimisation and assessment of buildings. Participants of this project are from both industry (construction and research) and academia.
Resumo:
This paper investigates detection of architectural distortion in mammographic images using support vector machine. Hausdorff dimension is used to characterise the texture feature of mammographic images. Support vector machine, a learning machine based on statistical learning theory, is trained through supervised learning to detect architectural distortion. Compared to the Radial Basis Function neural networks, SVM produced more accurate classification results in distinguishing architectural distortion abnormality from normal breast parenchyma.
Resumo:
The content of this paper is a snapshot of a current project looking at producing a real-time sensor-based building assessment tool, and a system that personalises work-spaces using multi-agent technology. Both systems derive physical environment information from a wireless sensor network that allows clients to subscribe to real-time sensed data. The principal ideologies behind this project are energy efficiency and well-being of occupants; in the context of leveraging the current state-of-the-art in agent technology, wireless sensor networks and building assessment systems to enable the optimisation and assessment of buildings. Participants of this project are from both industry (construction and research) and academia.