871 resultados para nucleic acid-related substances


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to infection by Rhizobium, highly differentiated organs called nodules form on legume roots. Within these organs, the symbiotic association between the host plant and bacteria is established. A putative plant transcription factor, NMH7, has been identified in alfalfa root nodules. nmh7 contains a MADS-box DNA-binding region and shows homology to flower homeotic genes. This gene is a member of a multigene family in alfalfa and was identified on the basis of nucleic acid homology to plant regulatory protein genes (MADS-box-containing genes) from Antirrhinum and Arabidopsis. RNA analysis and in situ hybridization showed that expression of this class of regulatory genes is limited to the infected cells of alfalfa root nodules and is likely to be involved in the signal transduction pathway initiated by the bacterial symbiont, Rhizobium meliloti. The expression of nmh7 in a root-derived organ is unusual for this class of regulatory genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several models have been proposed for the infectious agents that cause human Creutzfeldt-Jakob disease (CJD) and sheep scrapie. Purified proteins and extracted nucleic acids are not infectious. To further identify the critical molecular components of the CJD agent, 120S infectious material with reduced prion protein (PrP) was treated with guanidine hydrochloride or SDS. Particulate and soluble components were then separated by centrifugation and molecularly characterized. Conditions that optimally solubilized residual PrP and/or nucleic acid-protein complexes were used to produce subfractions that were assayed for infectivity. All controls retained > 90% of the 120S titer (approximately 15% of that in total brain) but lost > 99.5% of their infectivity after heat-SDS treatment (unlike scrapie fractions enriched for PrP). Exposure to 1% SDS at 22 degrees C produced particulate nucleic acid-protein complexes that were almost devoid of host PrP. These sedimenting complexes were as infectious as the controls. In contrast, when such complexes were solubilized with 2.5 M guanidine hydrochloride, the infectious titer was reduced by > 99.5%. Sedimenting PrP aggregates with little nucleic acid and no detectable nucleic acid-binding proteins had negligible infectivity, as did soluble but multimeric forms of PrP. These data strongly implicate a classical viral structure, possibly with no intrinsic PrP, as the CJD infectious agent. CJD-specific protective nucleic acid-binding protein(s) have already been identified in 120S preparations, and preliminary subtraction studies have revealed several CJD-specific nucleic acids. Such viral candidates deserve more attention, as they may be of use in preventing iatrogenic CJD and in solving a fundamental mystery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach was developed for the isolation and characterization of soybean plasma membrane-associated proteins by immunoscreening of a cDNA expression library. An antiserum was raised against purified plasma membrane vesicles. In a differential screening of approximately 500,000 plaque-forming units with the anti-(plasma membrane) serum and DNA probes derived from highly abundant clones isolated in a preliminary screening, 261 clones were selected from approximately 1,200 antiserum-positive plaques. These clones were classified into 40 groups by hybridization analysis and 5'- and 3'-terminal sequencing. By searching nucleic acid and protein sequence data bases, 11 groups of cDNAs were identified, among which valosin-containing protein (VCP), clathrin heavy chain, phospholipase C, and S-adenosylmethionine:delta 24-sterol-C-methyltransferase have not to date been cloned from plants. The remaining 29 groups did not match any current data base entries and may, therefore, represent additional or yet uncharacterized genes. A full-length cDNA encoding the soybean VCP was sequenced. The high level of amino acid identity with vertebrate VCP and yeast CDC48 protein indicates that the soybean protein is a plant homolog of vertebrate VCP and yeast CDC48 protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smooth muscle cell (SMC) proliferation is thought to play a major role in vascular restenosis after angioplasty and is a serious complication of the procedure. Developing antisense (AS) oligonucleotides as therapeutics is attractive because of the potentially high specificity of binding to their targets, and several investigators have reported inhibition of SMC proliferation in vitro and in vivo by using AS strategies. We report here the results of our experiments on vascular SMCs using AS oligonucleotides directed toward c-myb and c-myc. We found that significant inhibition of SMC proliferation occurred with these specific AS sequences but that this inhibition was clearly not via a hybridization-dependent AS mechanism. Rather, inhibition was due to the presence of four contiguous guanosine residues in the oligonucleotide sequence. This was demonstrated in vitro in primary cultures of SMCs and in arteries ex vivo. The ex vivo model developed here provides a rapid and effective system in which to screen potential oligonucleotide drugs for restenosis. We have further explored the sequence requirements of this non-AS effect and determined that phosphorothioate oligonucleotides containing at least two sets of three or four consecutive guanosine residues inhibit SMC proliferation in vitro and ex vivo. These results suggest that previous AS data obtained using these and similar, contiguous guanosine-containing AS sequences be reevaluated and that there may be an additional class of nucleic acid compounds that have potential as antirestenosis therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho é apresentar uma técnica automática baseada em morfologia matemática para medida de sinal em imagens de cDNA desenvolvida no BIOINFO,em parceria com o Instituto Ludwig de Pesquisa contra o Câncer. A tecnologia de lâminas de cDNA é um processo baseado em hibridização que possibilita observar a concentração relativa de mRNA de amostras de tecidos analisando a luminosidade de sinais fluorescentes ou radioativos. Hibridização é o processo bioquímico onde duas fitas de ácido nucleico com seqüências complementares se combinam. A técnica apresentada permite o cálculo da expressão gênica com alto grau de automação, podendo o usuário corrigir com facilidade eventuais erros de segmentação. O usuário interage com o programa apenas para selecionar as imagens e inserir os dados de geometria da lâmina. A estratégia de solução usada tem três fases: gradeamento dos blocos, gradeamento dos spots e segmentação dos spots. Todas as fases utilizam filtros morfológicos e as fases de gradeamento possuem um passo final de correção baseado nos dados de geometria da lâmina o que aumenta a robustez do processo, que funciona bem mesmo em imagens ruidosas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En Argentina, en consonancia con el resto del mundo, la Nanotecnología es considerada un área estratégica. Sin embargo, las investigaciones en Nanobiotecnología todavía constituyen un área de vacancia. El uso de nanomateriales para desarrollar plataformas bioanalíticas que permitan la construcción de biosensores ofrece múltiples ventajas y una promisoria perspectiva de aplicación en diversas áreas. En la actualidad, los laboratorios de análisis clínicos, la industria farmacéutica y alimentaria, y los laboratorios de control bromatológico y ambiental requieren de metodologías analíticas que proporcionen resultados exactos, reproducibles, rápidos, sensibles y selectivos empleando pequeños volúmenes de muestra, con un mínimo consumo de reactivos y una producción de deshechos limpia y escasa. Las investigaciones en nanobiosensores se encuentran dirigidas hacia el logro de estas metas. Uno de los grandes desafíos es lograr biosensores miniaturizados con potencialidad para el desarrollo de dispositivos de medición descentralizada (“point of care”) y la detección simultánea de multianalitos. Aún cuando se han hecho innumerables desarrollos en los casi 50 años de vida de los biosensores, todavía hay numerosos interrogantes por dilucidar. La modificación con nanomateriales juega un rol preponderante en los transductores tanto en los electroquímicos como en los plasmónicos. El uso de películas delgadas de Au para SPR modificadas con grafeno u óxido de grafeno, es un campo de una enorme potencialidad y sin embargo es muy poco explotado, por lo que reviste gran importancia. En lo referido a la capa de biorreconocimiento, se trabajará con moléculas capaces de establecer interacciones de bioafinidad, como los anticuerpos y también moléculas que son muy poco usadas en nuestro país y en Latinoamérica como ADN, aptámeros, PNA y lectinas. RESUMEN: El Objetivo general de este proyecto es desarrollar nuevas plataformas bioanalíticas para la detección de diferentes eventos de bioafinidad a partir de la integración de transductores electroquímicos (EQ) y plasmónicos con materiales nanoestructurados (nanotubos de carbono, nanoláminas de grafeno, nanoalambres metálicos); biomoléculas (ADN, “peptide nucleic acid” (PNA), aptámeros, anticuerpos, lectinas) y polímeros funcionalizados con moléculas bioactivas. Las arquitecturas supramoleculares resultantes estarán dirigidas al desarrollo de biosensores EQ y plasmónicos para la cuantificación de biomarcadores de relevancia clínica y medioambiental. Se funcionalizarán CNT, grafeno, óxido de grafeno, nanoalambres metálicos empleando homopéptidos y proteínas con alta afinidad por cationes metálicos, los que se integrarán a transductores de carbono y oro y biomoléculas de reconocimiento capaces de formar complejos de afinidad (antígeno-anticuerpo, aptámero-molécula blanco, ADN-ADN, PNA-ADN, lectinas-hidratos de carbono, ligandos-cationes metálicos y avidina-biotina). Se sintetizarán y caracterizarán nuevos monómeros y polímeros funcionalizados con moléculas bioactivas y/o grupos rédox empleando diferentes rutas sintéticas. Se desarrollarán genosensores para la detección del evento de hibridación de secuencias de interés médico (cáncer de colon y de mama, tuberculosis); aptasensores para la detección de marcadores proteicos de T. cruzi, enfermedades cardiovasculares y contaminantes catiónicos; inmunosensores para la detección de biomarcadores proteicos relacionados con enfermedades cardiovasculares y cáncer; y biosensores de afinidad con lectinas para la detección de hidratos de carbono. La caracterización de las plataformas y las señales analíticas se obtendrán empleando las siguientes técnicas: voltamperometrías cíclica, de pulso diferencial y de onda cuadrada; stripping; resonancia de plasmón superficial; espectroscopía de impedancia electroquímica; microscopías de barrido electroquímico, SEM, TEM, AFM,SNOM, espectroscopías: UV-vis, FTIR,Raman;RMN, TGA y DSC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of noncharged polar amino acids, particularly Gin and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15degrees-98degreesC) were used to generate IIII modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent-accessible area for more Gin, Thr, and hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60degreesC, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes. from psychrophiles to hyperthermophiles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Rev-erbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for > 30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (> 15-fold) in mRNA expression of interleukin-6, an exercise-induced myokine that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (> 20- fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multi-tasking protein that acts in the cytoplasm and nucleus. We have explored the possibility that this protein is associated with telomeres and participates in their maintenance. Rat brain hnRNP A2 was shown to have two nucleic acid binding sites. In the presence of heparin one site binds single-stranded oligodeoxyribonucleotides irrespective of sequence but not the corresponding oligoribonucleotides. Both the hnRNP A2-binding cis-acting element for the cytoplasmic RNA trafficking element, A2RE, and the ssDNA telomere repeat match a consensus sequence for binding to a second sequence-specific site identified by mutational analysis. hnRNP A2 protected the telomeric repeat sequence, but not the complementary sequence, against DNase digestion: the glycine-rich domain was found to be necessary, but not sufficient, for protection. The N-terminal RRM (RNA recognition motif) and tandem RRMs of hnRNP A2 also bind the single-stranded, template-containing segment of telomerase RNA. hnRNP A2 colocalizes with telomeric chromatin in the subset of PML bodies that are a hallmark of ALT cells, reinforcing the evidence for hnRNPs having a role in telomere maintenance. Our results support a model in which hnRNP A2 acts as a molecular adapter between single-stranded telomeric repeats, or telomerase RNA, and another segment of ssDNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of point mutations or single nucleotide polymorphisms (SNPs) is important in relation to disease susceptibility or detection in pathogens of mutations determining drug resistance or host range. There is an emergent need for rapid detection methods amenable to point-of-care applications. The purpose of this study was to reduce to practice a novel method for SNP detection and to demonstrate that this technology can be used downstream of nucleic acid amplification. The authors used a model system to develop an oligonucleotide-based SNP detection system on nitrocellulose lateral flow strips. To optimize the assay they used cloned sequences of the herpes simplex virus-1 (HSV-1) DNA polymerase gene into which they introduced a point mutation. The assay system uses chimeric polymerase chain reaction (PCR) primers that incorporate hexameric repeat tags ("hexapet tags"). The chimeric sequences allow capture of amplified products to predefined positions on a lateral flow strip. These "hexapet" sequences have minimal cross-reactivity and allow specific hybridization-based capture of the PCR products at room temperature onto lateral flow strips that have been striped with complementary hexapet tags. The allele-specific amplification was carried out with both mutant and wild-type primer sets present in the PCR mix ("competitive" format). The resulting PCR products carried a hexapet tag that corresponded with either a wild-type or mutant sequence. The lateral flow strips are dropped into the PCR reaction tube, and mutant sequence and wild-type sequences diffuse along the strip and are captured at the corresponding position on the strip. A red line indicative of a positive reaction is visible after 1 minute. Unlike other systems that require separate reactions and strips for each target sequence, this system allows multiplex PCR reactions and multiplex detection on a single strip or other suitable substrates. Unambiguous visual discrimination of a point mutation under room temperature hybridization conditions was achieved with this model system in 10 minutes after PCR. The authors have developed a capture-based hybridization method for the detection and discrimination of HSV-1 DNA polymerase genes that contain a single nucleotide change. It has been demonstrated that the hexapet oligonucleotides can be adapted for hybridization on the lateral flow strip platform for discrimination of SNPs. This is the first step in demonstrating SNP detection on lateral flow using the hexapet oligonucleotide capture system. It is anticipated that this novel system can be widely used in point-of-care settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Genital ulcer disease (GUD) is commonly caused by pathogens for which suitable therapies exist, but clinical and laboratory diagnoses may be problematic. This collaborative project was undertaken to address the need for a rapid, economical, and sensitive approach to the detection and diagnosis of GUD using noninvasive techniques to sample genital ulcers. Methods. The genital ulcer disease multiplex polymerase chain reaction (GUMP) was developed as an inhouse nucleic acid amplification technique targeting serious causes of GUD, namely, herpes simplex viruses (HSVs), Haemophilus ducreyi, Treponema pallidum, and Klebsiella species. In addition, the GUMP assay included an endogenous internal control. Amplification products from GUMP were detected by enzyme linked amplicon hybridization assay (ELAHA). Results. GUMP-ELAHA was sensitive and specific in detecting a target microbe in 34.3% of specimens, including 1 detection of HSV-1, three detections of HSV-2, and 18 detections of T. pallidum. No H. ducreyi has been detected in Australia since 1998, and none was detected here. No Calymmatobacterium ( Klebsiella) granulomatis was detected in the study, but there were 3 detections during ongoing diagnostic use of GUMP-ELAHA in 2004 and 2005. The presence of C. granulomatis was confirmed by restriction enzyme digestion and nucleotide sequencing of the 16S rRNA gene for phylogenetic analysis. Conclusions. GUMP-ELAHA permitted comprehensive detection of common and rare causes of GUD and incorporated noninvasive sampling techniques. Data obtained by using GUMP-ELAHA will aid specific treatment of GUD and better define the prevalence of each microbe among at-risk populations with a view to the eradication of chancroid and donovanosis in Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kunjin virus is a member of the Flavivirus genus and is an Australian variant of West Nile virus. The C-terminal domain of the Kunjin virus NS3 protein displays helicase activity. The protein is thought to separate daughter and template RNA strands, assisting the initiation of replication by unwinding RNA secondary structure in the 3' nontranslated region. Expression, purification and preliminary crystallographic characterization of the NS3 helicase domain are reported. It is shown that Kunjin virus helicase may adopt a dimeric assembly in absence of nucleic acids, oligomerization being a means to provide the helicases with multiple nucleic acid-binding capability, facilitating translocation along the RNA strands. Kunjin virus NS3 helicase domain is an attractive model for studying the molecular mechanisms of flavivirus replication, while simultaneously providing a new basis for the rational development of anti-flaviviral compounds.