946 resultados para nonsteroidal anti-inflammatory agents
Resumo:
OBJECTIVE: To evaluate the initiation of and response to tumor necrosis factor (TNF) inhibitors for axial spondyloarthritis (axSpA) in private rheumatology practices versus academic centers. METHODS: We compared newly initiated TNF inhibition for axSpA in 363 patients enrolled in private practices with 100 patients recruited in 6 university hospitals within the Swiss Clinical Quality Management (SCQM) cohort. RESULTS: All patients had been treated with ≥ 1 nonsteroidal antiinflammatory drug and > 70% of patients had a baseline Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) ≥ 4 before anti-TNF agent initiation. The proportion of patients with nonradiographic axSpA (nr-axSpA) treated with TNF inhibitors was higher in hospitals versus private practices (30.4% vs 18.7%, p = 0.02). The burden of disease as assessed by patient-reported outcomes at baseline was slightly higher in the hospital setting. Mean levels (± SD) of the Ankylosing Spondylitis Disease Activity Score were, however, virtually identical in private practices and academic centers (3.4 ± 1.0 vs 3.4 ± 0.9, p = 0.68). An Assessment of SpondyloArthritis international Society (ASAS40) response at 1 year was reached for ankylosing spondylitis in 51.7% in private practices and 52.9% in university hospitals (p = 1.0) and for nr-axSpA in 27.5% versus 25.0%, respectively (p = 1.0). CONCLUSION: With the exception of a lower proportion of patients with nr-axSpA newly treated with anti-TNF agents in private practices in comparison to academic centers, adherence to ASAS treatment recommendations for TNF inhibition was equally high, and similar response rates to TNF blockers were achieved in both clinical settings.
Resumo:
Nitric oxide (NO) plays an important role in mediating many aspects of inflammatory responses. NO is an effector molecule of cellular injury, and can act as an anti-oxidant. It can modulate the release of various inflammatory mediators from a wide range of cells participating in inflammatory responses (e.g., leukocytes, macrophages, mast cells, endothelial cells, and platelets). It can modulate blood flow, adhesion of leukocytes to the vascular endothelium and the activity of numerous enzymes, all of which can have an impact on inflammatory responses. In recent years, NO-releasing drugs have been developed, usually as derivatives of other drugs, which exhibit very powerful anti-inflammatory effects.
Resumo:
The concept of anti-inflammation is currently evolving with the definition of several endogenous inhibitory circuits that are important in the control of the host inflammatory response. Here we focus on one of these pathways, the annexin 1 (ANXA1) system. Originally identified as a 37 kDa glucocorticoid-inducible protein, ANXA1 has emerged over the last decade as an important endogenous modulator of inflammation. We review the pharmacological effects of ANXA1 on cell types involved in inflammation, from blood-borne leukocytes to resident cells. This review reveals that there is scope for more research, since most of the studies have so far focused on the effects of the protein and its peptido-mimetics on neutrophil recruitment and activation. However, many other cells central to inflammation, e.g. endothelial cells or mast cells, also express ANXA1: it is foreseen that a better definition of the role(s) of the endogenous protein in these cells will open the way to further pharmacological studies. We propose that a more systematic analysis of ANXA1 physio-pharmacology in cells involved in the host inflammatory reaction could aid in the design of novel anti-inflammatory therapeutics based on this endogenous mediator.
Resumo:
As many metalloproteinases (MMPs), macrophage elastase (MMP-12) is able to degrade extracellular matrix components such as elastin and is involved in tissue remodeling processes. Studies using animal models of acute and chronic pulmonary inflammatory diseases, such as pulmonary fibrosis and chronic obstrutive pulmonary disease (COPD), have given evidences that MMP-12 is an important mediator of the pathogenesis of these diseases. However, as very few data regarding the direct involvement of MMP-12 in inflammatory process in the airways were available, we have instilled a recombinant form of human MMP-12 (rhMMP-12) in mouse airways. Hence, we have demonstrated that this instillation induced a severe inflammatory cell recruitment characterized by an early accumulation of neutrophils correlated with an increase in proinflammatory cytokines and in gelatinases and then by a relatively stable recruitment of macrophages in the lungs over a period of ten days. Another recent study suggests that resident alveolar macrophages and recruited neutrophils are not involved in the delayed macrophage recruitment. However, epithelial cells could be one of the main targets of rhMMP-12 in our model. We have also reported that a corticoid, dexamethasone, phosphodiesterase 4 inhibitor, rolipram and a non-selective MMP inhibitor, marimastat could reverse some of these inflammatory events. These data indicate that our rhMMP-12 model could mimic some of the inflammatory features observed in COPD patients and could be used for the pharmacological evaluation of new anti-inflammatory treatment. In this review, data demonstrating the involvement of MMP-12 in the pathogenesis of pulmonary fibrosis and COPD as well as our data showing a pro-inflammatory role for MMP-12 in mouse airways will be summarized.
Resumo:
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, particularly those producing CTX-M types of ESBL, are emerging pathogens. Bacteremia caused by these organisms represents a clinical challenge, because the organisms are frequently resistant to the antimicrobials recommended for treatment of patients with suspected E. coli sepsis. METHODS:A cohort study was performed that included all episodes of bloodstream infection due to ESBL-producing E. coli during the period from January 2001 through March 2005. Data on predisposing factors, clinical presentation, and outcome were collected. ESBLs were characterized using isoelectric focusing, polymerase chain reaction, and sequencing. RESULTS: Forty-three episodes (8.8% of cases of bacteremia due to E. coli) were included; 70% of the isolates produced a CTX-M type of ESBL. The most frequent origins of infection were the urinary (46%) and biliary tracts (21%). Acquisition was nosocomial in 21 cases (49%), health care associated in 14 cases (32%), and strictly community acquired in 8 cases (19%). Thirty-eight percent and 25% of patients had obstructive diseases of the urinary and biliary tracts, respectively, and 38% had recently received antimicrobials. Nine patients (21%) died. Compared with beta-lactam/beta-lactamase-inhibitor and carbapenem-based regimens, empirical therapy with cephalosporins or fluoroquinolones was associated with a higher mortality rate (9% vs. 35%; P=.05) and needed to be changed more frequently (24% vs. 78%; P=.001). CONCLUSIONS: ESBL-producing E. coli is a significant cause of bloodstream infection in hospitalized and nonhospitalized patients in the context of the emergence of CTX-M enzymes. Empirical treatment of sepsis potentially caused by E. coli may need to be reconsidered in areas where such ESBL-producing isolates are present.
Resumo:
Interleukin (IL)-15 is a pleiotropic cytokine that regulates the proliferation and survival of many cell types. IL-15 is produced by monocytes and macrophages against infectious agents and plays a pivotal role in innate and adaptive immune responses. This study analyzed the effect of IL-15 on fungicidal activity, oxidative metabolism and cytokine production by human monocytes challenged in vitro with Paracoccidioides brasiliensis (Pb18), the agent of paracoccidioidomycosis. Peripheral blood monocytes were pre-incubated with IL-15 and then challenged with Pb18. Fungicidal activity was assessed by viable fungi recovery from cultures after plating on brain-heart infusion-agar. Superoxide anion (O2-), hydrogen peroxide (H2O2), tumour necrosis factor-alpha (TNF-α), IL-6, IL-15 and IL-10 production by monocytes were also determined. IL-15 enhanced fungicidal activity against Pb18 in a dose-dependent pattern. This effect was abrogated by addition of anti-IL-15 monoclonal antibody. A significant stimulatory effect of IL-15 on O2- and H2O2 release suggests that fungicidal activity was dependent on the activation of oxidative metabolism. Pre-treatment of monocytes with IL-15 induced significantly higher levels of TNF-α, IL-10 and IL-15 production by cells challenged with the fungus. These results suggest a modulatory effect of IL-15 on pro and anti-inflammatory cytokine production, oxidative metabolism and fungicidal activity of monocytes during Pb18 infection.
Resumo:
INTRODUCTION Genetic variations may influence clinical outcomes in patients with sepsis. The present study was conducted to evaluate the impact on mortality of three polymorphisms after adjusting for confounding variables, and to assess the factors involved in progression of the inflammatory response in septic patients. METHOD The inception cohort study included all Caucasian adults admitted to the hospital with sepsis. Sepsis severity, microbiological information and clinical variables were recorded. Three polymorphisms were identified in all patients by PCR: the tumour necrosis factor (TNF)-alpha 308 promoter polymorphism; the polymorphism in the first intron of the TNF-beta gene; and the IL-10-1082 promoter polymorphism. Patients included in the study were followed up for 90 days after hospital admission. RESULTS A group of 224 patients was enrolled in the present study. We did not find a significant association among any of the three polymorphisms and mortality or worsening inflammatory response. By multivariate logistic regression analysis, only two factors were independently associated with mortality, namely Acute Physiology and Chronic Health Evaluation (APACHE) II score and delayed initiation of adequate antibiotic therapy. In septic shock patients (n = 114), the delay in initiation of adequate antibiotic therapy was the only independent predictor of mortality. Risk factors for impairment in inflammatory response were APACHE II score, positive blood culture and delayed initiation of adequate antibiotic therapy. CONCLUSION This study emphasizes that prompt and adequate antibiotic therapy is the cornerstone of therapy in sepsis. The three polymorphisms evaluated in the present study appear not to influence the outcome of patients admitted to the hospital with sepsis.
Resumo:
Protein energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is associated with adverse clinical outcomes, especially in individuals receiving maintenance dialysis therapy. A multitude of factors can affect the nutritional and metabolic status of CKD patients requiring a combination of therapeutic maneuvers to prevent or reverse protein and energy depletion. These include optimizing dietary nutrient intake, appropriate treatment of metabolic disturbances such as metabolic acidosis, systemic inflammation, and hormonal deficiencies, and prescribing optimized dialytic regimens. In patients where oral dietary intake from regular meals cannot maintain adequate nutritional status, nutritional supplementation, administered orally, enterally, or parenterally, is shown to be effective in replenishing protein and energy stores. In clinical practice, the advantages of oral nutritional supplements include proven efficacy, safety, and compliance. Anabolic strategies such as anabolic steroids, growth hormone, and exercise, in combination with nutritional supplementation or alone, have been shown to improve protein stores and represent potential additional approaches for the treatment of PEW. Appetite stimulants, anti-inflammatory interventions, and newer anabolic agents are emerging as novel therapies. While numerous epidemiological data suggest that an improvement in biomarkers of nutritional status is associated with improved survival, there are no large randomized clinical trials that have tested the effectiveness of nutritional interventions on mortality and morbidity.
Resumo:
The host immune response plays an important role in viral clearance in patients who are chronically infected with hepatitis C virus (HCV) and are treated with interferon and ribavirin. Activation of the immune system involves the release of pro and anti-inflammatory molecules that can be measured in plasma samples. The present study aimed to evaluate the association between pretreatment plasma levels of chemokines and soluble tumor necrosis factor receptors (sTNF-R) and the virological response in treated patients with chronic hepatitis C infection. Forty-one chronically-infected HCV patients that were being treated with interferon-α (IFN-α) plus ribavirin were included in the study. Socio-demographic, clinical and laboratory data were collected and pretreatment plasma levels of chemokine CCL2, CCL3, CCL11, CCL24, chemokine CXCL9, CXCL10, sTNF-R1 and sTNF-R2 were measured. The virological response was assessed at treatment week 12, at the end of treatment and 24 weeks after treatment. Pretreatment CXCL10 levels were significantly higher in patients without an early virological response (EVR) or sustained virological response (SVR) compared to responders [512.9 pg/mL vs. 179.1 pg/mL (p = 0.011) and 289.9 pg/mL vs. 142.7 pg/mL (p = 0.045), respectively]. The accuracy of CXCL10 as a predictor of the absence of EVR and SVR was 0.79 [confidence interval (CI) 95%: 0.59-0.99] and 0.69 (CI 95%: 0.51-0.87), respectively. Pretreatment plasma levels of the other soluble inflammatory markers evaluated were not associated with a treatment response. Pretreatment CXCL10 levels were predictive of both EVR and SVR to IFN-α and ribavirin and may be useful in the evaluation of candidates for therapy.
Resumo:
Multinucleated giant cells (MGC) are cells present in characteristic granulomatous inflammation induced by intracellular infectious agents or foreign materials. The present study evaluated the modulatory effect of granulocyte macrophage colony-stimulating factor (GM-CSF) in association with other cytokines such as interferon-gamma (IFN-γ), tumour necrosis factor-alpha, interleukin (IL)-10 or transforming growth factor beta (TGF-β1) on the formation of MGC from human peripheral blood monocytes stimulated with Paracoccidioides brasiliensis antigen (PbAg). The generation of MGC was determined by fusion index (FI) and the fungicidal activity of these cells was evaluated after 4 h of MGC co-cultured with viable yeast cells of P. brasiliensis strain 18 (Pb18). The results showed that monocytes incubated with PbAg and GM-CSF plus IFN-γ had a significantly higher FI than in all the other cultures, while the addition of IL-10 or TGF-β1 had a suppressive effect on MGC generation. Monocytes incubated with both pro and anti-inflammatory cytokines had a higher induction of foreign body-type MGC rather than Langhans-type MGC. MGC stimulated with PbAg and GM-CSF in association with the other cytokines had increased fungicidal activity and the presence of GM-CSF also partially inhibited the suppressive effects of IL-10 and TGF-β1. Together, these results suggest that GM-CSF is a positive modulator of PbAg-stimulated MGC generation and on the fungicidal activity against Pb18.
Resumo:
Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria.
Resumo:
Severe asthma is a heterogeneous disease that affects only 5%-10% of asthmatic patients, although it accounts for a significant percentage of the consumption of health care resources. Severe asthma is characterized by the need for treatment with high doses of inhaled corticosteroids and includes several clinical and pathophysiological phenotypes. To a large extent, this heterogeneity restricts characterization of the disease and, in most cases, hinders the selection of appropriate treatment. In recent years, therefore, emphasis has been placed on improving our understanding of the various phenotypes of severe asthma and the identification of biomarkers for each of these phenotypes. Likewise, the concept of the endotype has been gaining acceptance with regard to the various subtypes of the disease, which are classified according to their unique functional or pathophysiological mechanism. This review discusses the most relevant aspects of the clinical and inflammatory phenotypes of severe asthma, including severe childhood asthma and the various endotypes of severe asthma. The main therapeutic options available for patients with uncontrolled severe asthma will also be reviewed.
Resumo:
Humans are not programmed to be inactive. The combination of both accelerated sedentary lifestyle and constant food availability disturbs ancient metabolic processes leading to excessive storage of energy in tissue, dyslipidaemia and insulin resistance. As a consequence, the prevalence of Type 2 diabetes, obesity and the metabolic syndrome has increased significantly over the last 30 years. A low level of physical activity and decreased daily energy expenditure contribute to the increased risk of cardiovascular morbidity and mortality following atherosclerotic vascular damage. Physical inactivity leads to the accumulation of visceral fat and consequently the activation of the oxidative stress/inflammation cascade, which promotes the development of atherosclerosis. Considering physical activity as a 'natural' programmed state, it is assumed that it possesses atheroprotective properties. Exercise prevents plaque development and induces the regression of coronary stenosis. Furthermore, experimental studies have revealed that exercise prevents the conversion of plaques into a vulnerable phenotype, thus preventing the appearance of fatal lesions. Exercise promotes atheroprotection possibly by reducing or preventing oxidative stress and inflammation through at least two distinct pathways. Exercise, through laminar shear stress activation, down-regulates endothelial AT1R (angiotensin II type 1 receptor) expression, leading to decreases in NADPH oxidase activity and superoxide anion production, which in turn decreases ROS (reactive oxygen species) generation, and preserves endothelial NO bioavailability and its protective anti-atherogenic effects. Contracting skeletal muscle now emerges as a new organ that releases anti-inflammatory cytokines, such as IL-6 (interleukin-6). IL-6 inhibits TNF-α (tumour necrosis factor-α) production in adipose tissue and macrophages. The down-regulation of TNF-α induced by skeletal-muscle-derived IL-6 may also participate in mediating the atheroprotective effect of physical activity.
Resumo:
Epidemiological studies have demonstrated the beneficial effect of plant-derived food intake in reducing the risk of cardiovascular disease (CVD). The potential bioactivity of cocoa and its polyphenolic components in modulating cardiovascular health is now being studied worldwide and continues to grow at a rapid pace. In fact, the high polyphenol content of cocoa is of particular interest from the nutritional and pharmacological viewpoints. Cocoa polyphenols are shown to possess a range of cardiovascular-protective properties, and can play a meaningful role through modulating different inflammatory markers involved in atherosclerosis. Accumulated evidence on related anti-inflammatory effects of cocoa polyphenols is summarized in the present review.
Resumo:
The optimum treatment for prosthetic joint infections has not been clearly defined. We report our experience of the management of acute haematogenous prosthetic joint infection (AHPJI) in patients during a 3-year prospective study in nine Spanish hospitals. Fifty patients, of whom 30 (60%) were female, with a median age of 76 years, were diagnosed with AHPJI. The median infection-free period following joint replacement was 4.9 years. Symptoms were acute in all cases. A distant previous infection and/or bacteraemia were identified in 48%. The aetiology was as follows: Staphylococcus aureus, 19; Streptococcus spp., 14; Gram-negative bacilli, 12; anaerobes, two; and mixed infections, three. Thirty-four (68%) patients were treated with a conservative surgical approach (CSA) with implant retention, and 16 had prosthesis removal. At 2-year follow-up, 24 (48%) were cured, seven (14%) had relapsed, seven (14%) had died, five (10%) had persistent infection, five had re-infection, and two had an unknown evolution. Overall, the treatment failure rates were 57.8% in staphylococcal infections and 14.3% in streptococcal infections. There were no failures in patients with Gram-negative bacillary. By multivariate analysis, CSA was the only factor independently associated with treatment failure (OR 11.6; 95% CI 1.29-104.8). We were unable to identify any factors predicting treatment failure in CSA patients, although a Gram-negative bacillary aetiology was a protective factor. These data suggest that although conservative surgery was the only factor independently associated with treatment failure, it could be the first therapeutic choice for the management of Gram-negative bacillary and streptococcal AHPJI, and for some cases with acute S. aureus infections.