965 resultados para nitrogen remobilization
Resumo:
The effects of ocean acidification on nitrogen (N2) fixation rates and on the community composition of N2-fixing microbes (diazotrophs) were examined in coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm enclosures of ∼50 m3 each were deployed for 20 days during June-July 2012 in the Bay of Calvi, Corsica, France. Three control mesocosms were maintained under ambient conditions of carbonate chemistry. The remainder were manipulated with CO2 saturated seawater to attain target amendments of pCO2 of 550, 650, 750, 850, 1000 and 1250 μatm. Rates of N2 fixation were elevated up to 10 times relative to control rates (2.00 ± 1.21 nmol L-1d-1) when pCO2 concentrations were >1000 μatm and pHT (total scale) < 7.74. Diazotrophic phylotypes commonly found in oligotrophic marine waters, including the Mediterranean, were not present at the onset of the experiment and therefore, the diazotroph community composition was characterised by amplifying partial nifH genes from the mesocosms. The diazotroph community was comprised primarily of cluster III nifH sequences (which include possible anaerobes), and proteobacterial (α and γ) sequences, in addition to small numbers of filamentous (or pseudo-filamentous) cyanobacterial phylotypes. The implication from this study is that there is some potential for elevated N2 fixation rates in the coastal western Mediterranean before the end of this century as a result of increasing ocean acidification. Observations made of variability in the diazotroph community composition could not be correlated with changes in carbon chemistry, which highlights the complexity of the relationship between ocean acidification and these keystone organisms.
Resumo:
Trichodesmium, a colonial cyanobacterium typically associated with tropical waters, was observed between January and April 2014 in the western English Channel. Sequencing of the heterocyst differentiation (hetR) and 16S rRNA genes placed this community within the Clade IV Trichodesmium, an understudied clade previously found only in low numbers in warmer waters. Nitrogen fixation was not detected although measurable rates of nitrate uptake and carbon fixation were observed. Trichodesmium RuBisCO transcript abundance relative to gene abundance suggests the potential for viable and potentially active Trichodesmium carbon fixation. Observations of Trichodesmium when coupled with a numerical advection model indicate that Trichodesmium communities can remain viable for >3.5 months at temperatures lower than previously expected. The results suggest that Clade IV Trichodesmium occupies a different niche to other Trichodesmium species, and is a cold- or low-light-adapted variant.
Resumo:
Climate change is occurring most rapidly in the Arctic where warming has been twice as fast as the rest of the globe over the last few decades. Arctic soils contain a vast store of carbon and warmer arctic soils may mediate current atmospheric CO2 concentrations and global warming trends. Warmer soils could increase nutrient availability to plants, leading to increased primary production and sequestration of CO2. Presumably because of these effects of warming on shrub ecosystems, shrubs have been expanding across the arctic over the last 50 years, Arctic shrub expansion may track or cause changes in nutrient cycling and availability that favour growth of larger, denser shrubs. This study aimed at measuring gross and net nitrogen cycling rates, major soil nitrogen and carbon pool sizes, and elucidating controls on nutrient cycling and availability between a mesic birch (Betula nana) hummock tundra ecosystem and an ecosystem of dense, tall, birch (B. nana) shrubs. Nitrogen cycling and availability was enhanced at the tall shrub ecosystem compared to the birch hummock ecosystem. Net nitrogen immobilization by microbes was approximately threefold greater at the tall shrub ecosystem. This was in part because of larger microbial biomass nitrogen and carbon (interpreted as a larger microbial community) at the tall shrub ecosystem. Nitrogen inputs via litter were significantly larger at the tall shrub ecosystem and were hypothesized to be the major contributor to the higher dissolved organic and inorganic nitrogen pools in the soil at the tall shrub ecosystem. The results from this study suggest a positive feedback mechanism between litter nitrogen inputs and the enhancement of nitrogen cycling and availability as a driver of shrub expansion across the Arctic.
Resumo:
High- resolution UVES/ VLT spectra of B 12, an extreme pole- on Be star in the SMC cluster NGC 330, have been analysed using non-LTE model atmospheres to obtain its chemical composition relative to the SMC standard star AV304. We find a general underabundance of metals which can be understood in terms of an extra contribution to the stellar continuum due to emission from a disk which we estimate to be at the similar to 25% level. When this is corrected for, the nitrogen abundance for B12 shows no evidence of enhancement by rotational mixing as has been found in other non-Be B-type stars in NGC 330, and is inconsistent with evolutionary models which include the effects of rotational mixing. A second Be star, NGC330-B 17, is also shown to have no detectable nitrogen lines. Possible explanations for the lack of rotational mixing in these rapidly rotating stars are discussed, one promising solution being the possibility that magnetic fields might inhibit rotational mixing.