972 resultados para nicotine C-oxidase
Resumo:
Familial hypertrophic cardiomyopathy (FHC) is frequently caused by cardiac myosin-binding protein C (cMyBP-C) gene mutations, which should result in C-terminal truncated mutants. However, truncated mutants were not detected in myocardial tissue of FHC patients and were rapidly degraded by the ubiquitin-proteasome system (UPS) after gene transfer in cardiac myocytes. Since the diversity and specificity of UPS regulation lie in E3 ubiquitin ligases, we investigated whether the muscle-specific E3 ligases atrogin-1 or muscle ring finger protein-1 (MuRF1) mediate degradation of truncated cMyBP-C. Human wild-type (WT) and truncated (M7t, resulting from a human mutation) cMyBP-C species were co-immunoprecipitated with atrogin-1 after adenoviral overexpression in cardiac myocytes, and WT-cMyBP-C was identified as an interaction partner of MuRF1 by yeast two-hybrid screens. Overexpression of atrogin-1 in cardiac myocytes decreased the protein level of M7t-cMyBP-C by 80% and left WT-cMyBP-C level unaffected. This was rescued by proteasome inhibition. In contrast, overexpression of MuRF1 in cardiac myocytes not only reduced the protein level of WT- and M7t-cMyBP-C by > 60%, but also the level of myosin heavy chains (MHCs) by > 40%, which were not rescued by proteasome inhibition. Both exogenous cMyBP-C and endogenous MHC mRNA levels were markedly reduced by MuRF1 overexpression. Similar to cardiac myocytes, MuRF1-overexpressing (TG) mice exhibited 40% lower levels of MHC mRNAs and proteins. Protein levels of cMyBP-C were 29% higher in MuRF1 knockout and 34% lower in TG than in WT, without a corresponding change in mRNA levels. These data suggest that atrogin-1 specifically targets truncated M7t-cMyBP-C, but not WT-cMyBP-C, for proteasomal degradation and that MuRF1 indirectly reduces cMyBP-C levels by regulating the transcription of MHC.
Resumo:
The present work investigated the role of the sympathetic nervous system (SINS) in the control of protein degradation in skeletal muscles from rats with streptozotocin (STZ)-induced diabetes. Diabetes (1, 3, and 5 days after STZ) induced a significant increase in the norepinephrine content of soleus and EDL muscles, but it did not affect plasma catecholamine levels. Chemical sympathectomy induced by guanethidine (100 mg/kg body weight, for 1 or 2 days) reduced muscle norepinephrine content to negligible levels (less than 5%), decreased plasma epinephrine concentration, and further increased the high rate of protein degradation in muscles from acutely diabetic rats. The rise in the rate of proteolysis (nmol.mg wet wt(-1).2h(-1)) in soleus from 1-day diabetic sympathectomized rats was associated with increased activities of lysosomal (0.127 +/- 0.008 vs. 0.086 +/- 0.013 in diabetic control) and ubiquitin (Ub)-proteasome-dependent proteolytic pathways (0.154 +/- 0,007 vs. 0.121 +/- 0.006 in diabetic control). Increases in Ca2+-depenclent (0.180 +/- 0.007 vs. 0.121 +/- 0.011 in diabetic control) and Ub-proteasome-dependent proteolytic systems (0.092 +/- 0.003 vs. 0.060 +/- 0.002 in diabetic control) were observed in EDL from 1-day diabetic sympathectomized rats. The lower phosphorylation levels of AKT and Foxo3a in EDL muscles from 3-day diabetic rats were further decreased by sympathectomy. The data suggest that the SNS exerts acute inhibitory control of skeletal muscle proteolysis during the early stages of diabetes in rats, probably involving the AKT/Foxo signaling pathway.
Resumo:
In the kallikrein-kinin and renin-angiotensin systems the main receptors, B-1 and B-2 (kinin receptors) and AT(1) and AT(2) (angiotensin receptors) respectively, are seven-transmembrane domain G-protein-coupled receptors. Considering that the B, agonists Des-Arg(9)-BK (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe), Lys-desArg(9)-BK or Des-Arg(10)-KD (Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe) and the AT, agonist (Asp-Arg-Val-Tyr-lle-His-Pro-Phe) have the same two residues at the C-terminal region (i.e. Pro-Phe), we hypothesized that TM V and TM VI of the B-1 receptor could play an essential role in agonist binding and activity, being these regions receptor sites for binding the C-terminal sequences of Des-Arg-kinins similarly to that observed to AT, receptor. To investigate this hypothesis, we replaced Arg(212) for Ala at the top of the TM V and the sequence 274-282 (CPYHFFAFL) in TM VI of the rat kinin B, receptor by the 32 receptor homologous sequence, 289-297 (FPFQISTFL) and subsequently analyzed the consequences of these mutations by competition binding and functional assays. Despite correct expression, observed at the mRNA and protein level by RT-PCR and confocal microscopy, respectively, no agonist binding and function was verified for the mutated receptors. Therefore, our results suggest an important role for Arg(212) in the TM V and a region of TM VI of rat B, receptor in the interaction with the C-terminal residues of Des-Arg-kinins, similar to that observed with AngII. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background. Ischemia-reperfusion injury is believed to be a major cause of transferred skin flap failure. Cigarette smoking is known to be associated with endogenous antioxidant depletion, hypercoagulability, and cutaneous vasoconstriction. This investigation was carried out to study possible effects of pentoxyfilline or heparin on rat skin reperfusion injury under tobacco exposure. Materials and Methods. Thirty-six rats were randomized into two major groups: 18 were exposed to cigarette smoke during a 4 wk period prior to surgery; the remaining 18 underwent a sham smoking procedure. Each group was further divided into three equal subgroups: heparin, pentoxyfilline, and saline solution. One identical skin flap was raised in each animal. The vasculature of the flap was clamped for 3 h and reperfused for 5 min. A venous blood sample was obtained from the flap after reperfusion for serum malondialdehyde (MDA) and myeloperoxidase (MPO) analysis. Flap survival was assessed 7 d after the procedure. Results. The lipid peroxidation levels and flap necrosis were significantly higher in the cigarette-smoking group skin flaps. There was also a decrease of MPO activity in this group compared with the nonsmoking group. Heparin-treated rats had significantly lower MDA levels and showed the most viable percent area among smoking rats. Conclusions. These data suggest that heparin had a significant beneficial effect both on flap survival and on the lipid peroxidation reduction after smoke exposure in the rat axial-pattern skin flap subjected to ischemia and reperfusion injury. Pharmacologic therapy may represent an alternative way to counteract tobacco effects in flap surgery in emergency situations. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background and Aim: Tissue injury leads to activation of coagulation and generation of thrombin. Inhibition of thrombin receptor protease-activated receptor 1 (PAR-1) has been shown to reduce liver fibrosis in animals. This study aimed to evaluate the effect of PAR-1 gene polymorphism on rate of liver fibrosis (RF) in chronic hepatitis C. Methods: Polymorphisms studied: C > T transition 1426 bp upstream of translation start site (-1426C/T), 13 bp repeat of preceding -506 5`-CGGCCGCGGGAAG-3` sequence (-506I/D), and A > T transversion in intervening sequence (IVS) 14 bp upstream of exon-2 start site (IVS-14A/T). A total of 287 European and 90 Brazilian patients were studied. Results: 1426C/T polymorphism: There was a trend to higher RF in patients with the TT genotype (P = 0.06) and an association between genotype CC and slow fibrosis (P = 0.03) in Europeans. In males, RF was significantly higher in those with the TT genotype compared to CT (P = 0.003) and CC (P = 0.007). There was a significant association between TT and fast fibrosis (P = 0.04). This was confirmed in an independent cohort of Brazilians where RF was higher in TT than in CC (P = 0.03). Analysis of -506I/D showed no difference in RF and distribution of slow/fast fibrosis among different genotypes in both populations. Analysis of IVS-14A/T showed no difference between genotypes. Conclusion: In conclusion, these findings suggest that PAR-1 receptor polymorphisms influence the progression of liver fibrosis.
Resumo:
In the present study, BALB/c mice were used to develop a model for the hepatic injury associated to dengue infection. Histological analysis after subcutaneous inoculation with a low viral dose of dengue-2 virus showed Kupffer cell hyperplasia and an increased inflammatory cellular infiltrate next to the bile ducts on days 5, 7 and 14 post-inoculation, mainly characterized by the presence of mononuclear cells. The liver mRNA transcription level of IL-1 beta was highest on the 5th day post-infection (p.i.) and decreased by the 21st day, TNF-alpha showed a peak of mRNA transcription after 14 days p.i. coinciding with the regression of cellular infiltrates and elevated expression of TGF-beta mRNA. Serum AST and ALT levels were slightly elevated at 7 and 14 days post-infection. Dengue-2 RNA levels were undetectable in the liver on any of the days following inoculation. Our observations suggest that, as it is true for humans, the animals undergo a transient and slight liver inflammation, probably due to local cytokine production and cellular infiltration in the liver. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background Conflicting results have been reported in studies evaluating the relationship between serum markers of iron overload, liver iron deposits, and HFE mutations (C282Y and H63D) in chronic hepatitis C patients, and also their impact on the response to therapy in these patients. Aim To evaluate the role of HFE mutations in the severity of liver disease and in the response to therapy in chronic hepatitis C. Methods Two hundred and sixty-four hepatitis C patients treated with standard interferon and ribavirin were divided into two groups according to type of antiviral response: sustained virological response (SVR) and nonresponse or relapse. We evaluated the relationship between HFE mutation and the type of antiviral response, clinical data, biochemical tests, liver histopathology, virological data, and HFE mutations. Results Of the 264 patients, 88 (32.1%) had SVR whereas 67.9% had nonresponse or relapse. Liver iron deposits were observed in 49.2% of the patients. The factors associated with SVR were hepatitis C virus genotype 2 or 3, transferrin saturation value of 45% or less, and detection of the H63D mutation. HFE mutation was more frequent in patients with iron deposits, but without association with serum iron biochemistry or severity of liver disease. Steatosis was more frequent in patients with liver iron deposits. Conclusion The H63D mutation was an independent factor associated with SVR in chronic hepatitis C patients, as also were hepatitis C virus genotype 2 or 3 and transferrin saturation value of 45% or less. Moreover, the H63D mutation was associated with liver iron deposits. Eur J Gastroenterol Hepatol 22: 1204-1210 (C) 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Aims: To evaluate the C-reactive protein (CRP) and interleukin-6 (IL-6) as diagnostic tools for early onset infection in preterm infants with early respiratory distress (RD). Methods: CRP and IL-6 were quantified at identification of RD and 24 h after in 186 newborns. Effects of maternal hypertension, mode of delivery, Apgar score, birth weight, gestational age, mechanical ventilation, being small for gestational age (SGA), and the presence of infection were analyzed. Results: Forty-four infants were classified as infected, 42 as possibly infected, and 100 as uninfected. Serum levels of IL-6 (0 h), CRP (0 h), and CRP (24 h), but not IL-6 (24 h) were significantly higher in infected infants compared to the remaining groups. The best test for identification of infection was the combination of IL-6 (0 h) 36 pg/dL and/or CRP (24 h) 0.6 mg/dL, which yielded 93% sensitivity and 37% specificity. The presence of infection and vaginal delivery independently increased IL-6 (0 h), CRP (0 h) and CRP (24 h) levels. Being SGA also increased the CRP (24 h) levels. IL-6 (24 h) was independently increased by mechanical ventilation. Conclusions: The combination of IL-6 (0 h) and/or CRP (24 h) is helpful for excluding early onset infection in preterm infants with RD but the poor specificity limits its potential benefit as a diagnostic tool.
Resumo:
GLUT is the major glucose transporter in mammalian cells. Single nucleotide polymorphisms (SNP) at GLUT1 promoter and regulatory regions have been associated to the risk of developing nephropathy in different type 1 and type 2 diabetic populations. It has been demonstrated that differences in allelic and genotypic frequencies of GLUT1 gene (SLC2A1) polymorphisms occur among different populations. Therefore, ethnic differences in distribution of GLUT1 gene polymorphisms may be an important factor in determining gene-disease association. In this study, we investigated the XbaIG > T and HaeIIIT > C polymorphisms in six different Brazilian populations: 102 individuals from Salvador population (Northern Brazil), 56 European descendants from Joinville (South Brazil), 85 Indians from Tiryi tribe (North Brazil) and 127 samples from Southern Brazil: 44 from European descendants, 42 from African descendants and 41 from Japanese descendants. Genotype frequencies from both sites did not differ significantly from those expected under the Hardy-Weinberg equilibrium. We verified that the allele frequencies of both polymorphisms were heterogeneous in these six Brazilian ethnic groups.
Resumo:
In the present study, the participation of the Na(v)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC epsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(v)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(v)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(v)1.8 decreased the Na(v)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. once the persistent hypernociception had been abolished by dipyrone, but not by Na(v)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(v)1.8 mRNA up-regulation in the DRG. in addition, during the persistent hypernociceptive state, the PKA and PKC epsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKC epsilon inhibitors reduce the hypernociception as well as the Na(v)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(v)1.8 mRNA by PKA and PKC epsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.
Resumo:
Aims We demonstrated c-Src activation as a novel non-genomic signalling pathway for aldosterone in vascular smooth muscle cells (VSMCs). Here, we investigated molecular mechanisms and biological responses of this phenomenon, focusing on the role of lipid rafts/caveolae and platelet-derived growth factor receptor (PDGFR) in c-Src-regulated proinflammatory responses by aldosterone. Methods and results Studies were performed in cultured VSMCs from Wistar-Kyoto (WKY) rats and caveolin-1 knockout (Cav 1(-/-)) and wild-type mice. Aldosterone stimulation increased c-Src phosphorylation and trafficking to lipid rafts/caveolae. Cholesterol depletion with methyl-beta-cyclodextrin abrogated aldosterone-induced phosphorylation of c-Src and its target, Pyk2. Aldosterone effects were recovered by cholesterol reload. Aldosterone-induced c-Src and cortactin phosphorylation was reduced in caveolin-1-silenced and Cav 1(-/-) VSMCs. PDGFR is phosphorylated by aldosterone within cholesterol-rich fractions of VSMCs. AG1296, a PDGFR inhibitor, prevented c-Src phosphorylation and translocation to cholesterol-rich fractions. Aldosterone induced an increase in adhesion molecule protein content and promoted monocyte adhesion to VSMCs, responses that were inhibited an by cholesterol depletion, caveolin-1 deficiency, AG1296 and PP2, a c-Src inhibitor. Mineralocorticoid receptor (MR) content in flotillin-2-rich fractions and co-immunoprecipitation with c-Src and PDGFR increased upon aldosterone stimulation, indicating MR-lipid raft/signalling association. Conclusion We demonstrate that aldosterone-mediated c-Src trafficking/activation and proinflammatory signalling involve lipid rafts/caveolae via PDGFR.
Resumo:
This study examined the psychometric properties of the Brazilian versions of the Fagerstrom Test for Nicotine Dependence (FTND) and the Heaviness of Smoking Index (HSI). The test-retest reliability of the FTND was assessed in a sample of 61 smoking university students, with a 15-day interval between assessments. The interrater reliability was examined in 30 smoking patients of a psychosocial care center for alcohol and drug users (PCC-AD). The reliability coefficient was estimated by the kappa and intraclass correlation coefficients. The predictive validity, internal consistency, and factor structure of the FTND and the HSI were evaluated by factor analysis in 271 smokers treated at an emergency unit and at the PCC-AD. The gold standard was the nicotine dependence criteria of DSM-IV, as assessed by the Structured Clinical Interview for DSM-IV. The FTND showed high reliability, with correlation coefficients of .92 for test-retest reliability and .99 for interrater reliability. Both the FTND and the HSI presented high levels of sensitivity and specificity. The internal consistency evaluation yielded a Cronbach`s alpha coefficient of .83 for the FTND and of .56 for the HSI. An exploratory factor analysis found 2 factors in the FTND, which were validated by a confirmatory factor analysis. The results obtained in this study confirm the validity and reliability of the Brazilian versions of the FTND and the HSI.
Resumo:
Experimental animal studies have shown that nicotine exposure during gestation alters the expression of fetal hypothalamic neuropeptides involved in the control of appetite. We aimed to determine whether the exposure to maternal smoking during gestation in humans is associated with an altered feeding behavior of the adult offspring. A longitudinal prospective cohort study was conducted including all births from Ribeirao Preto (Sao Paulo, Brazil) between 1978 and 1979. At 24 years of age, a representative random sample was re-evaluated and divided into groups exposed (n = 424) or not (n = 1586) to maternal smoking during gestation. Feeding behavior was analyzed using a food frequency questionnaire. Covariance analysis was used for continuous data and the chi(2) test for categorical data. Results were adjusted for birth weight ratio, body mass index, gender, physical activity and smoking, as well as maternal and subjects` schooling. Individuals exposed to maternal smoking during gestation ate more carbohydrates than proteins (as per the carbohydrate-to-protein ratio) than non-exposed individuals. There were no differences in the consumption of the macronutrients themselves. We propose that this adverse fetal life event programs the individual`s physiology and metabolism persistently, leading to an altered feeding behavior that could contribute to the development of chronic diseases in the long term.
Resumo:
Rocio virus (ROCV) is a flavivirus, probably transmitted by Culex mosquitoes and maintained in nature as a zoonosis of wild birds. Rocio virus caused a human epidemic of severe encephalitis that lasted from 1973 to 1980 in the Ribeira valley, in the southeastern coast of Brazil. After this outbreak, serologic evidence of ROCV circulation has been reported and public health authorities are concerned about a return of ROCV outbreaks in Brazil. We show here a study on the pathogenesis and the physiopathology of ROCV disease in the central nervous system of a Balb/C young adult mice experimental model. The animals were intraperitoneally infected by ROCV and followed from 0 to 9 days after infection, when all of them died. Nervous tissue samples were collected from infected animals for immunohistochemistry and molecular biology analysis. We observed the virus in the central nervous system, the inflammatory changes induced by Th1 and Th2 cytokines, and the final irreversible damage of nervous tissues by neuronal degeneration and apoptosis. These findings can help to better understand the pathogenesis and physiopathology of the human meningoencephalomyelitis by ROCV and other flaviviruses.