831 resultados para network-based intrusion detection system
Resumo:
The superoxide radical is considered to play important roles in physiological processes as well as in the genesis of diverse cytotoxic conditions such as cancer, various cardiovascular disorders and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). The detection and quantification of superoxide within cells is of critical importance to understand biological roles of superoxide and to develop preventive strategies against free radical-mediated diseases. Cyclic nitrone spin traps such as DMPO, EMPO, DEPMPO, BMPO and their derivatives have been widely used in conjunction with ESR spectroscopy to detect cellular superoxide with some success. However, the formation of unstable superoxide adducts from the reaction of cyclic nitrones with superoxide is a stumbling block in detecting superoxide by using electron spin resonance (ESR). A chemiluminescent probe, lucigenin, and fluorogenic probes, hydroethidium and MitoSox, are the other frequently used methods in detecting superoxide. However, luceginen undergoes redox-cycling producing superoxide by itself, and hydroethidium and MitoSox react with other oxidants apart from superoxide forming red fluorescent products contributing to artefacts in these assays. Hence, both methods were deemed to be inappropriate for superoxide detection. In this study, an effective approach, a selective mechanism-based colorimetric detection of superoxide anion has been developed by using silylated azulenyl nitrones spin traps. Since a nitrone moiety and an adjacent silyl group react readily with radicals and oxygen anions respectively, such nitrones can trap superoxide efficiently because superoxide is both a radical and an oxygen anion. Moreover, the synthesized nitrone is designed to be triggered solely by superoxide and not by other commonly observed oxygen radicals such as hydroxyl radical, alkoxyl radicals and peroxyl radical. In vitro studies have shown that these synthesized silylated azylenyl nitrones and the mitochondrial-targeted guanylhydrazone analog can trap superoxide efficiently yielding UV-vis identifiable and even potentially fluorescence-detectable orange products. Therefore, the chromotropic detection of superoxide using these nitrones can be a promising method in contrast to other available methods.
Resumo:
High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system's high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.
Resumo:
The improvement in living standards and the development of telecommunications have led to a large increase in the number of Internet users in China. It has been reported by China National Network Information Center that the number of Internet users in China has reached 33.7 million in 2001, ranting the country third in the world. This figure also shows that more and more Chinese residents have accepted the Internet and use it to obtain information and compete their travel planning. Milne and Ateljevic stated that the integration of computing and telecommunications would create a global information network based mostly on the Internet. The Internet, especially the World Wide Web, has had a great impact on the hospitality and tourism industry in recent years. The WWW plays an important role in mediating between customers and hotel companies as a place to acquire information acquisition and transact business.
Resumo:
Objective Based on the system of reference and counter-reference and comprehensiveness in oral health care, we aimed to examine ways of refering users to Specialized Dental Care Centers (SDCC) and the interface between them and Primary Care. Methods This is a cross-sectional study carried out with users and dentists of SDCC in a metropolitan region of Northeast of Brazil. Analyses were descriptive, and the association test was done with chi-square. Results Six forms of entry to specialized service were identified: free demand (13.8 %) and reference by the Primary Care dentist (63.2 %) were most frequent. Users referred by the basic health unit dentist had more interest in making a counter-reference than the others (p<0.001, PR=4.65, 95 % CI: 2.74 to 7.91), while individuals without this referral had 1.49 times more difficulty obtaining care (95 % CI: 1.02 to 2.17). Referral procedures are a decisive factor for counter-references. However, the high demand for primary care services and the short supply these services can offer in the face of needs make SDCC performance difficult. Conclusion The analysis of oral health practices from the perspective of network modeling points to the service's need to establish protocols for regulation in a bid to improve access to and the quality of care provided.
Resumo:
Objective Based on the system of reference and counter-reference and comprehensiveness in oral health care, we aimed to examine ways of refering users to Specialized Dental Care Centers (SDCC) and the interface between them and Primary Care. Methods This is a cross-sectional study carried out with users and dentists of SDCC in a metropolitan region of Northeast of Brazil. Analyses were descriptive, and the association test was done with chi-square. Results Six forms of entry to specialized service were identified: free demand (13.8 %) and reference by the Primary Care dentist (63.2 %) were most frequent. Users referred by the basic health unit dentist had more interest in making a counter-reference than the others (p<0.001, PR=4.65, 95 % CI: 2.74 to 7.91), while individuals without this referral had 1.49 times more difficulty obtaining care (95 % CI: 1.02 to 2.17). Referral procedures are a decisive factor for counter-references. However, the high demand for primary care services and the short supply these services can offer in the face of needs make SDCC performance difficult. Conclusion The analysis of oral health practices from the perspective of network modeling points to the service's need to establish protocols for regulation in a bid to improve access to and the quality of care provided.
Resumo:
Product quality planning is a fundamental part of quality assurance in manufacturing. It is composed of the distribution of quality aims over each phase in product development and the deployment of quality operations and resources to accomplish these aims. This paper proposes a quality planning methodology based on risk assessment and the planning tasks of product development are translated into evaluation of risk priorities. Firstly, a comprehensive model for quality planning is developed to address the deficiencies of traditional quality function deployment (QFD) based quality planning. Secondly, a novel failure knowledge base (FKB) based method is discussed. Then a mathematical method and algorithm of risk assessment is presented for target decomposition, measure selection, and sequence optimization. Finally, the proposed methodology has been implemented in a web based prototype software system, QQ-Planning, to solve the problem of quality planning regarding the distribution of quality targets and the deployment of quality resources, in such a way that the product requirements are satisfied and the enterprise resources are highly utilized. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
This thesis demonstrates a new way to achieve sparse biological sample detection, which uses magnetic bead manipulation on a digital microfluidic device. Sparse sample detection was made possible through two steps: sparse sample capture and fluorescent signal detection. For the first step, the immunological reaction between antibody and antigen enables the binding between target cells and antibody-‐‑ coated magnetic beads, hence achieving sample capture. For the second step, fluorescent detection is achieved via fluorescent signal measurement and magnetic bead manipulation. In those two steps, a total of three functions need to work together, namely magnetic beads manipulation, fluorescent signal measurement and immunological binding. The first function is magnetic bead manipulation, and it uses the structure of current-‐‑carrying wires embedded in the actuation electrode of an electrowetting-‐‑on-‐‑dielectric (EWD) device. The current wire structure serves as a microelectromagnet, which is capable of segregating and separating magnetic beads. The device can achieve high segregation efficiency when the wire spacing is 50µμm, and it is also capable of separating two kinds of magnetic beads within a 65µμm distance. The device ensures that the magnetic bead manipulation and the EWD function can be operated simultaneously without introducing additional steps in the fabrication process. Half circle shaped current wires were designed in later devices to concentrate magnetic beads in order to increase the SNR of sample detection. The second function is immunological binding. Immunological reaction kits were selected in order to ensure the compatibility of target cells, magnetic bead function and EWD function. The magnetic bead choice ensures the binding efficiency and survivability of target cells. The magnetic bead selection and binding mechanism used in this work can be applied to a wide variety of samples with a simple switch of the type of antibody. The last function is fluorescent measurement. Fluorescent measurement of sparse samples is made possible of using fluorescent stains and a method to increase SNR. The improved SNR is achieved by target cell concentration and reduced sensing area. Theoretical limitations of the entire sparse sample detection system is as low as 1 Colony Forming Unit/mL (CFU/mL).
Resumo:
Miniaturized, self-sufficient bioelectronics powered by unconventional micropower may lead to a new generation of implantable, wireless, minimally invasive medical devices, such as pacemakers, defibrillators, drug-delivering pumps, sensor transmitters, and neurostimulators. Studies have shown that micro-enzymatic biofuel cells (EBFCs) are among the most intuitive candidates for in vivo micropower. In the fisrt part of this thesis, the prototype design of an EBFC chip, having 3D intedigitated microelectrode arrays was proposed to obtain an optimum design of 3D microelectrode arrays for carbon microelectromechanical systems (C-MEMS) based EBFCs. A detailed modeling solving partial differential equations (PDEs) by finite element techniques has been developed on the effect of 1) dimensions of microelectrodes, 2) spatial arrangement of 3D microelectrode arrays, 3) geometry of microelectrode on the EBFC performance based on COMSOL Multiphysics. In the second part of this thesis, in order to investigate the performance of an EBFC, behavior of an EBFC chip performance inside an artery has been studied. COMSOL Multiphysics software has also been applied to analyze mass transport for different orientations of an EBFC chip inside a blood artery. Two orientations: horizontal position (HP) and vertical position (VP) have been analyzed. The third part of this thesis has been focused on experimental work towards high performance EBFC. This work has integrated graphene/enzyme onto three-dimensional (3D) micropillar arrays in order to obtain efficient enzyme immobilization, enhanced enzyme loading and facilitate direct electron transfer. The developed 3D graphene/enzyme network based EBFC generated a maximum power density of 136.3 μWcm-2 at 0.59 V, which is almost 7 times of the maximum power density of the bare 3D carbon micropillar arrays based EBFC. To further improve the EBFC performance, reduced graphene oxide (rGO)/carbon nanotubes (CNTs) has been integrated onto 3D mciropillar arrays to further increase EBFC performance in the fourth part of this thesisThe developed rGO/CNTs based EBFC generated twice the maximum power density of rGO based EBFC. Through a comparison of experimental and theoretical results, the cell performance efficiency is noted to be 67%.
Resumo:
In the frame of the transnational ALPS-GPSQUAKENET project, a component of the Alpine Space Programme of the European Community Initiative Programme (CIP) INTERREG III B, the Deutsches Geodätisches Forschungsinstitut (DGFI) in Munich, Germany, installed in 2005 five continuously operating permanent GPS stations located along the northern Alps boundary in Bavaria. The main objective of the ALPS-GPSQUAKENET project was to build-up a high-performance transnational space geodetic network of Global Positioning System (GPS) receivers in the Alpine region (the so-called Geodetic Alpine Integrated Network, GAIN). Data from this network allows for studying crustal deformations in near real-time to monitor Earthquake hazard and improve natural disaster prevention. The five GPS stations operatied by DGFI are mounted on concrete pillars attached to solid rock. The names of the stations are (from west to east) Hochgrat (HGRA), Breitenberg (BREI), Fahrenberg (FAHR), Hochries (HRIE) and Wartsteinkopf (WART). The provided data series start from October 7, 2005. Data are stored with a temporal spacing of 15 seconds in daily RINEX files.
Resumo:
This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction.
Resumo:
The speed at which new scientific papers are published has increased dramatically, while the process of tracking the most recent publications having a high impact has become more and more cumbersome. In order to support learners and researchers in retrieving relevant articles and identifying the most central researchers within a domain, we propose a novel 2-mode multilayered graph derived from Cohesion Network Analysis (CNA). The resulting extended CNA graph integrates both authors and papers, as well as three principal link types: coauthorship, co-citation, and semantic similarity among the contents of the papers. Our rankings do not rely on the number of published documents, but on their global impact based on links between authors, citations, and semantic relatedness to similar articles. As a preliminary validation, we have built a network based on the 2013 LAK dataset in order to reveal the most central authors within the emerging Learning Analytics domain.
Resumo:
Cybercriminals ramp up their efforts with sophisticated techniques while defenders gradually update their typical security measures. Attackers often have a long-term interest in their targets. Due to a number of factors such as scale, architecture and nonproductive traffic however it makes difficult to detect them using typical intrusion detection techniques. Cyber early warning systems (CEWS) aim at alerting such attempts in their nascent stages using preliminary indicators. Design and implementation of such systems involves numerous research challenges such as generic set of indicators, intelligence gathering, uncertainty reasoning and information fusion. This paper discusses such challenges and presents the reader with compelling motivation. A carefully deployed empirical analysis using a real world attack scenario and a real network traffic capture is also presented.
Resumo:
To maintain the pace of development set by Moore's law, production processes in semiconductor manufacturing are becoming more and more complex. The development of efficient and interpretable anomaly detection systems is fundamental to keeping production costs low. As the dimension of process monitoring data can become extremely high anomaly detection systems are impacted by the curse of dimensionality, hence dimensionality reduction plays an important role. Classical dimensionality reduction approaches, such as Principal Component Analysis, generally involve transformations that seek to maximize the explained variance. In datasets with several clusters of correlated variables the contributions of isolated variables to explained variance may be insignificant, with the result that they may not be included in the reduced data representation. It is then not possible to detect an anomaly if it is only reflected in such isolated variables. In this paper we present a new dimensionality reduction technique that takes account of such isolated variables and demonstrate how it can be used to build an interpretable and robust anomaly detection system for Optical Emission Spectroscopy data.
Resumo:
[EN]This paper describes in detail a real-time multiple face detection system for video streams. The system adds to the good performance provided by a window shift approach, the combination of different cues available in video streams due to temporal coherence. The results achieved by this combined solution outperform the basic face detector obtaining a 98% success rate for around 27000 images, providing additionally eye detection and a relation between the successive detections in time by means of detection threads.
Resumo:
This keynote presentation will report some of our research work and experience on the development and applications of relevant methods, models, systems and simulation techniques in support of different types and various levels of decision making for business, management and engineering. In particular, the following topics will be covered. Modelling, multi-agent-based simulation and analysis of the allocation management of carbon dioxide emission permits in China (Nanfeng Liu & Shuliang Li Agent-based simulation of the dynamic evolution of enterprise carbon assets (Yin Zeng & Shuliang Li) A framework & system for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps: a big data perspective (Jin Xu, Zheng Li, Shuliang Li & Yanyan Zhang) Open innovation: intelligent model, social media & complex adaptive system simulation (Shuliang Li & Jim Zheng Li) A framework, model and software prototype for modelling and simulation for deshopping behaviour and how companies respond (Shawkat Rahman & Shuliang Li) Integrating multiple agents, simulation, knowledge bases and fuzzy logic for international marketing decision making (Shuliang Li & Jim Zheng Li) A Web-based hybrid intelligent system for combined conventional, digital, mobile, social media and mobile marketing strategy formulation (Shuliang Li & Jim Zheng Li) A hybrid intelligent model for Web & social media dynamics, and evolutionary and adaptive branding (Shuliang Li) A hybrid paradigm for modelling, simulation and analysis of brand virality in social media (Shuliang Li & Jim Zheng Li) Network configuration management: attack paradigms and architectures for computer network survivability (Tero Karvinen & Shuliang Li)