985 resultados para multiphoton ionization
Resumo:
We show that the significantly different effective temperatures (T(eff)) achieved by the luminous blue variable AG Carinae during the consecutive visual minima of 1985-1990 (T(eff) similar or equal to 22,800 K) and 2000-2001 (T(eff) similar or equal to 17,000 K) place the star on different sides of the bistability limit, which occurs in line-driven stellar winds around T(eff) similar to 21,000 K. Decisive evidence is provided by huge changes in the optical depth of the Lyman continuum in the inner wind as T(eff) changes during the S Dor cycle. These changes cause different Fe ionization structures in the inner wind. The bistability mechanism is also related to the different wind parameters during visual minima: the wind terminal velocity was 2-3 times higher and the mass-loss rate roughly two times smaller in 1985-1990 than in 2000-2003. We obtain a projected rotational velocity of 220 +/- 50 km s(-1) during 1985-1990 which, combined with the high luminosity (L(star) = 1.5 x 10(6) L(circle dot)), puts AG Car extremely close to the Eddington limit modified by rotation (Omega Gamma limit): for an inclination angle of 90 degrees, Gamma(Omega) greater than or similar to 1.0 for M(circle dot) less than or similar to 60. Based on evolutionary models and mass budget, we obtain an initial mass of similar to 100 M(circle dot) and a current mass of similar to 60-70 M(circle dot) for AG Car. Therefore, AG Car is close to, if not at, the Omega Gamma limit during visual minimum. Assuming M = 70 M(circle dot), we find that Gamma(Omega) decreases from 0.93 to 0.72 as AG Car expands toward visual maximum, suggesting that the star is not above the Eddington limit during maximum phases.
Resumo:
Astronomy has evolved almost exclusively by the use of spectroscopic and imaging techniques, operated separately. With the development of modern technologies, it is possible to obtain data cubes in which one combines both techniques simultaneously, producing images with spectral resolution. To extract information from them can be quite complex, and hence the development of new methods of data analysis is desirable. We present a method of analysis of data cube (data from single field observations, containing two spatial and one spectral dimension) that uses Principal Component Analysis (PCA) to express the data in the form of reduced dimensionality, facilitating efficient information extraction from very large data sets. PCA transforms the system of correlated coordinates into a system of uncorrelated coordinates ordered by principal components of decreasing variance. The new coordinates are referred to as eigenvectors, and the projections of the data on to these coordinates produce images we will call tomograms. The association of the tomograms (images) to eigenvectors (spectra) is important for the interpretation of both. The eigenvectors are mutually orthogonal, and this information is fundamental for their handling and interpretation. When the data cube shows objects that present uncorrelated physical phenomena, the eigenvector`s orthogonality may be instrumental in separating and identifying them. By handling eigenvectors and tomograms, one can enhance features, extract noise, compress data, extract spectra, etc. We applied the method, for illustration purpose only, to the central region of the low ionization nuclear emission region (LINER) galaxy NGC 4736, and demonstrate that it has a type 1 active nucleus, not known before. Furthermore, we show that it is displaced from the centre of its stellar bulge.
Resumo:
BACKGROUND: Chloroform, ethyl acetate and methanol extracts of a sample of red propolis from the state of Alagoas (northeast Brazil) were analyzed by gas chromatography-mass spectrometry and high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry. Antimicrobial and antioxidant activities were also obtained. RESULTS: The propolis sample contained low content of narigenin-8-C-hexoside, this being the first report of a C-glycoside in propolis. The main constituent found was characterized as 3,4,2`,3`-tetrahydroxychalcone. Other important constituents were the chalcone isoliquiritigenin, the isoflavans (3S)-vestitol, (3S)-7-O-methylvestitol, the pterocarpan medicarpin, the phenylpropenes trans-anethol, methyl eugenol, elimicin, methoxyeugenol and cis-asarone, and the triterpenic alcohols lupeol and alpha- and beta- amyrins. The methanol extract exhibited high antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl and beta-carotene/linoleic acid assay methods, and antimicrobial activity toward Gram-positive and Gram-negative bacteria. CONCLUSION: Structures are suggested for new substances never before seen in any kind of propolis. This is the first report of 3,4,2`,3`-tetrahydroxychalcone and a flavone C-glycoside in a propolis sample. (C) 2011 Society of Chemical Industry
Resumo:
Fatty acid (FA) composition of nine organs from two closely related Antarctic fish species, Notothenia codiceps and Notothenia rossii, was determined through gas chromatography with flame ionization detection. A data set for each species was obtained using major FA profiles from specimens caught in the sea waters of Admiralty Bay during the summer season. The FA profiles for both species are overall similar, but organ peculiarities have been found, which could reflect metabolic specificities and feeding habits between species. With the exception of liver, the most abundant FA in organs was the n-3 polyunsaturated FA. The total n-6 polyunsaturated FAs were minor components in all evaluated organs. Palmitic acid was identified as the major saturated FA, whereas oleic acid was the most represented of the monounsaturated FA in almost all assessed organs of both species. The n-3/n-6 ratios of all organs were higher than 3.5. Differences in individual FA and FA metabolic profiles of some organs observed between N. coriiceps and N. rossii suggest specific requirements in the mobilization, transport, incorporation, and/or catabolism of lipids that were reinforced by differences on some FA ratios expressing the activity coefficient of enzymes implicated on the FA pathway flux. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Objective: To assess the comparative bioavailability of two formulations (250 mg/5 mL suspension) of cefuroxime axetil (CAS 64544-07-6), administered with food, in healthy volunteers of both sexes. Methods: The study was conducted using an open, randomized, two-period crossover design with a 1-week washout interval. Plasma samples were obtained for up to 12 h post dose. Plasma cefuroxime axetil concentrations were analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS-MS) with negative ion electrospray ionization using multiple reactions monitoring (MRM). From the cefuroxime axetil plasma concentration vs. time curves, the following pharmacokinetic parameters were obtained: AUC(last) and C(max). Results: The limit of quantification was 0.1 mu g/mL for plasma cefuroxime axetil analysis. The geometric mean and 90% confidence interval CI of test/reference product percent ratios were: 106.1% (100.8%-111.8%) for C(max), 109.4% (104.8%-114.2%) for AUC(last). Conclusion: Since the 90% Cl for AUC(last) and C(max) ratios were within the 80-125 % interval proposed by the US FDA, it was concluded that cefuroxime axetil (test formulation, 250 mg/5 mL suspension) was bioequivalent to a reference formulation under fed conditions, for both the rate and extent of absorption.
Resumo:
A rapid, sensitive and specific LC-MS/MS method was developed and validated for quantifying chlordesmethyldiazepam (CDDZ or delorazepam), the active metabolite of cloxazolam, in human plasma. In the analytical assay, bromazepam (internal standard) and CDDZ were extracted using a liquid-liquid extraction (diethyl-ether/hexane, 80/20, v/v) procedure. The LC-MS/MS method on a RP-C18 column had an overall run time of 5.0 min and was linear (1/x weighted) over the range 0.5-50 ng/mL (R > 0.999). The between-run precision was 8.0% (1.5 ng/mL), 7.6% (9 ng/mL), 7.4% (40 ng/mL), and 10.9% at the low limit of quantification-LLOQ (0.500 ng/mL). The between-run accuracies were 0.1, -1.5, -2.7 and 8.7% for the above mentioned concentrations, respectively. All current bioanalytical method validation requirements (FDA and ANVISA) were achieved and it was applied to the bioequivalence study (Cloxazolam-test, Eurofarma Lab. Ltda and Olcadil (R)-reference, Novartis Biociencias S/A). The relative bioavailability between both formulations was assessed by calculating individual test/reference ratios for Cmax, AUClast and AUCO-inf. The pharmacokinetic profiles indicated bioequivalence since all ratios were as proposed by FDA and ANVISA. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In the present study Tradescantia pallida micronucleus (Trad-MCN) bioassay was used to assess the genotoxicity of particulate matter with a mass median aerodynamic diameter less than 10 pm (PM(10)) in Tangara da Serra (MT), a Brazilian Amazon region that suffers the impact of biomass burning. The levels of PM (coarse and fine size fractions) and black carbon (BC) collected were also measured. Furthermore, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified in the samples taken during the burning period by gas chromatography with flame ionization detection (GC-FID). The PM and BC results for both fractions indicate a strong correlation (p < 0.001). The analysis of alkanes indicates an anthropic influence. Retene was the most abundant PAH found, an indicator of biomass burning, and 12 other PAHs considered to be potentially mutagenic and/or carcinogenic were identified in this sample. The Trad-MCN bioassay showed a significant increase in micronucleus frequency during the period of most intense burning, possibly related to the mutagenic PAHs that were found in such extracts. This study demonstrated that Trad-MCN was sensitive and efficient in evaluating the genotoxicity of organic compounds from biomass burning. It further emphasizes the importance of performing chemical analysis, because changes in chemical composition generally have a negative effect on many living organisms. This bioassay (ex situ), using T. pallida with chemical analysis, is thus recommended for characterizing the genotoxicity of air pollution. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
Electron transport parameters are important in several areas ranging from particle detectors to plasma-assisted processing reactors. Nevertheless, especially at high fields strengths and for complex gases, relatively few data are published. A dedicated setup has been developed to measure the electron drift velocity and the first Townsend coefficient in parallel plate geometry. An RPC-like cell has been adopted to reach high field strengths without the risk of destructive sparks. The validation data obtained with pure Nitrogen will be presented and compared to a selection of the available literature and to calculations performed with Magboltz 2 version 8.6. The new data collected in pure Isobutane will then be discussed. This is the first time the electron drift velocity in pure Isobutane is measured well into the saturation region. Good agreement is found with expectations from Magboltz. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Boron compounds are widely used in synthetic chemistry. The synthesis of the compounds is relatively easy, presenting thermodynamic stability and synthetic versatility. Almost all of them show electrophilic reactivity. Recently, some boryllithium species have been reported as a base or a nucleophile in reaction with organic electrophiles in S(N)2 reactions. In the present work, the proton affinity (PA) of boryllithium compounds was calculated. These values can be useful as theoretical reference values and to provide valuable complementary information for the interpretation and discussion of the basicity of these compounds. The proton affinity was calculated using a theoretical method based on density functional theory and high-level theoretical methods through MP2 and G2MP2 levels of theory. In addition, some global and local reactivity indexes based on density functional theory (DFT) on boryllithium compounds were studied. In order to compare and discuss the chemical reactivity of these compounds, some analogues and electrophilic boron compounds were also studied. Our results showed a local and global nucleophilic reactivity of the boryllithium molecules in agreement with the experimental. reactivity. The boryllithium compounds revealed to be strong bases in comparison to other analogue compounds studied in this work.
Resumo:
The protective shielding design of a mammography facility requires the knowledge of the scattered radiation by the patient and image receptor components. The shape and intensity of secondary x-ray beams depend on the kVp applied to the x-ray tube, target/filter combination, primary x-ray field size, and scattering angle. Currently, shielding calculations for mammography facilities are performed based on scatter fraction data for Mo/Mo target/filter, even though modern mammography equipment is designed with different anode/filter combinations. In this work we present scatter fraction data evaluated based on the x-ray spectra produced by a Mo/Mo, Mo/Rh and W/Rh target/filter, for 25, 30 and 35 kV tube voltages and scattering angles between 30 and 165 degrees. Three mammography phantoms were irradiated and the scattered radiation was measured with a CdZnTe detector. The primary x-ray spectra were computed with a semiempirical model based on the air kerma and HVL measured with an ionization chamber. The results point out that the scatter fraction values are higher for W/Rh than for Mo/Mo and Mo/Rh, although the primary and scattered air kerma are lower for W/Rh than for Mo/Mo and Mo/Rh target/filter combinations. The scatter fractions computed in this work were applied in a shielding design calculation in order to evaluate shielding requirements for each of these target/filter combinations. Besides, shielding requirements have been evaluated converting the scattered air kerma from mGy/week to mSv/week adopting initially a conversion coefficient from air kerma to effective dose as 1 Sv/Gy and then a mean conversion coefficient specific for the x-ray beam considered. Results show that the thickest barrier should be provided for Mo/Mo target/filter combination. They also point out that the use of the conversion coefficient from air kerma to effective dose as 1 Sv/Gy is conservatively high in the mammography energy range and overestimate the barrier thickness. (c) 2008 American Association of Physicists in Medicine.
Resumo:
In this paper, we report the measurement of Rb(2) molecule formation rate constant due to a two body process in a magneto-optical trap as a function of the sample temperature. The ground state molecules are detected by two-photon ionization, through the intermediate a(3)Sigma(+)(u) -> 2(3)Pi(g) molecular band. Our results show that the Rb(2) molecules formed in the MOT could be due to a wave shape resonance, which enhances the molecule formation rate. This effect may be used to enhance the molecule production; and therefore it maybe important to future experiments involving production and trapping of cold ground state molecules.
Resumo:
Radial glia in the developing optic tectum express the key guidance molecules responsible for topographic targeting of retinal axons. However, the extent to which the radial glia are themselves influenced by retinal inputs and visual experience remains unknown. Using multiphoton live imaging of radial glia in the optic tectum of intact Xenopus laevis tadpoles in conjunction with manipulations of neural activity and sensory stimuli, radial glia were observed to exhibit spontaneous calcium transients that were modulated by visual stimulation. Structurally, radial glia extended and retracted many filopodial processes within the tectal neuropil over minutes. These processes interacted with retinotectal synapses and their motility was modulated by nitric oxide (NO) signaling downstream of neuronal NMDA receptor (NMDAR) activation and visual stimulation. These findings provide the first in vivo demonstration that radial glia actively respond both structurally and functionally to neural activity, via NMDAR-dependent NO release during the period of retinal axon ingrowth.
Resumo:
In this work, we investigate the control of the two-photon absorption process of a series of organic compounds via spectral phase modulation of the excitation pulse. We analyzed the effect of the pulse central wavelength on the control of the two-photon absorption process for each compound. Depending on the molecules` two-photon absorption position relative to the excitation pulse wavelength, different levels of coherent control were observed. By simulating the two-photon transition probability in molecular systems, taking into account the band structure and its positions, we could explain the experimental results trends. We observed that the intrapulse coherent interference plays an important role in the nonlinear process control besides just the pulse intensity modulation.
Resumo:
In this paper, I review some recent high-precision Rydberg state lifetime measurements using a cold-trapped sample of neutral atoms held in a magneto-optical trap. The measurements were performed in rubidium for the S, P and D states varying the principal quantum number from n = 26 to 45 using the field ionization technique. The experimental results were compared with quantum mechanical calculations and good agreement was observed. This is an important demonstration of how cold atomic samples can be used to perform high-precision spectroscopy in the time domain.
Resumo:
In the work reported here we were able to control the photobleaching of poly[2-methoxy-5-(2`-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), excited by two-photon absorption, using femtosecond pulse shaping. By applying a cosine-like spectral phase mask, we observe a reduction of three times in the photobleaching rate, while the fluorescence intensity decreases by 20%, in comparison to the values obtained with a Fourier-transform-limited pulse. These results demonstrate an interesting trade-off between photobleaching rate and nonlinear fluorescence intensity. The possible mechanism behind this process is discussed in terms of the pulse spectral profile and the absorbance band of MEH-PPV. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim