919 resultados para mixtures
Resumo:
The role of the plasma-grown nanoparticles in the plasma-enhanced chemical vapor deposition (PECVD) of the nanostructured carbon-based films was investigated. The samples were grown in the low-pressure rf plasmas of CH 4+H2+Ar gas mixtures. The enhanced deposition of the building units from the gas phase was found to support the formation of polymorphous nanostructured carbon films. The results reveal the crucial role played by the thermophoretic force in controlling the deposition of the plasma-grown fine particles.
Resumo:
The results of studies on the growth of high-aspect nanostructures in low-temperature non-equilibrium plasmas of reactive gas mixtures with or without hydrogen are presented. The results suggest that the hydrogen in the reactive plasma strongly affects the length of the nanostructures. This phenomenon is explained in terms of selective hydrogen passivation of the lateral and top surfaces of the surface-supported nanostructures. The theoretical model describes the effect of the atomic hydrogen passivation on the nanostructure shape and predicts the critical hydrogen coverage of the lateral surfaces necessary to achieve the nanostructure growth with the pre-determined shape. Our results demonstrate that the use of a strongly non-equilibrium plasma is very effective in significantly improving the shape control of quasi-one-dimensional single-crystalline nanostructures.
Resumo:
Management of nanopowder and reactive plasma parameters in a low-pressure RF glow discharge in silane is studied. It is shown that the discharge control parameters and reactor volume can be adjusted to ensure lower abundance of nanopowders, which is one of the requirements of the plasma-assisted fabrication of low-dimensional quantum nanostructures. The results are relevant to micro- and nanomanufacturing technologies employing low-pressure glow discharge plasmas of silane-based gas mixtures.
Resumo:
The results of 1D simulation of nanoparticle dynamics in the areas adjacent to nanostructured carbon-based films exposed to chemically active complex plasma of CH4 + H2 + Ar gas mixtures are presented. The nanoparticle-loaded near-substrate (including sheath and presheath) areas of a low-frequency (0.5 MHz) inductively coupled plasma facility for the PECVD growth of the ordered carbon-based nanotip structures are considered. The conditions allowing one to predict the size of particles that can pass through the plasma sheath and softly land onto the surface are formulated. The possibility of soft nano-cluster deposition without any additional acceleration common for some existing nano-cluster deposition schemes is demonstrated. The effect of the substrate heating power and the average atomic mass of neutral species is studied numerically and verified experimentally.
Resumo:
Al-C-N-O composite thin films have been synthesized by radio frequency reactive diode sputtering of an aluminum target in plasmas of N2+O2+CH4 gas mixtures. The chemical structure and composition of the films have been investigated by means of infrared and X-ray photoelectron spectroscopy. The results reveal the formation of C-N, Al-C, Al-N and Al-O bonds. The X-ray diffraction pattern suggests that the films are of nanometer composite material and contain predominately crystalline grains of hexagonal AlN and α-Al2O3. A good thermal stability of the composite has been confirmed by the annealing treatment at temperatures up to 600 °C.
Resumo:
Different aspects of the plasma-enhanced chemical vapor deposition of various carbon nanostructures in the ionized gas phase of high-density, low-temperature reactive plasmas of Ar+H2+CH4 gas mixtures are studied. The growth techniques, surface morphologies, densities and fluxes of major reactive species in the discharge, and effects of the transport of the plasma-grown nanoparticles through the near-substrate plasma sheath are examined. Possible growth precursors of the carbon nanostructures are also discussed. In particular, the experimental and numerical results indicate that it is likely that the aligned carbon nanotip structures are predominantly grown by the molecular and radical units, whereas the plasma-grown nanoparticles are crucial components of polymorphous carbon films.
Resumo:
Large area, highly uniform vertically aligned carbon nanotips (VACNTP) and other nanostructures have been grown on silicon (100) substrates with Ni catalyst in the low-temperature, low-frequency, high-density inductively coupled plasmas (ICP) of methane-hydrogen-argon gas mixtures. The control strategies for the morphology, crystalline structure and chemical states of the resulting nanostructures by varying the growth conditions are proposed. XRD and Roman analyses confirm that the nanotips are well graphitized, which is favorable for the field emission applications.
Resumo:
An attempt was made to investigate the optical emission spectra of atomic, molecular, and ionic species in low-frequency, high-density ICP discharges in pure nitrogen, ar con gases, and gas mixtures Ar+H2, N2+Ar, and N2+H2. The excited species were identified by in situ optical emission intensity (OEI) measurements in the discharge chamber. In general, significant results were obtained.
Resumo:
Carbon-doped hydrogenated silicon oxide (SiOCH) low-k films have been prepared using 13.56 MHz discharge in trimethylsilane (3MS) - oxygen gas mixtures at 3, 4, and 5 Torr sustained with RF power densities 1.3 - 2.6 W/cm2. The atomic structure of the SiOCH films appears to be a mixture the amorphous SiO2-like and the partially polycrystalline SiC-like phases. Results of the infra-red spectroscopy reflect the increment in the volume fraction of the SiC-like phase from 0.22 - 0.28 to 0.36 - 0.39 as the RF power increment. Steady-state near-UV laser-excited (364 nm wavelength, 40±2 mW) photoluminescence (PL) has been studied at room temperatures in the visible (1.8 eV - 3.1 eV) subrange of photon spectrum. Two main bands of the PL signal (at the photon energies of 2.5 - 2.6 eV and 2.8 - 2.9 eV) are observed. Intensities of the both bands are changed monotonically with RF power, whereas the bandwidth of ∼0.1 eV remains almost invariable. It is likely that the above lines are dumped by the non-radiative recombination involving E1-like centres in the amorphous-nanocrystalline SiC-like phases. Such explanation of the PL intensity dependences on the RF power density is supported by results of experimental studies of defect states spectrum in bandgap of the SiOCH films.
Resumo:
Optical emission of reactive plasma species during the synthesis of functionally graded calcium phosphate-based bioactive films has been investigated. The coatings have been deposited on Ti-6Al-4V orthopedic alloy by co-sputtering of hydroxyapatite (HA) and titanium targets in reactive plasmas of Ar + H2O gas mixtures. The species, responsible for the Ca-P-Ti film growth have been non-intrusively monitored in situ by a high-resolution optical emission spectroscopy (OES). It is revealed that the optical emission originating from CaO species dominates throughout the deposition process. The intensities of CaO, PO and CaPO species are strongly affected by variations of the operating pressure, applied RF power, and DC substrate bias. The optical emission intensity (OEI) of reaction species can efficiently be controlled by addition of H2O reactant.
Resumo:
Self-assembly of carbon nanotip (CNTP) structures on Ni-based catalyst in chemically active inductively coupled plasmas of CH 4 + H 2 + Ar gas mixtures is reported. By varying the process conditions, it appears possible to control the shape, size, and density of CNTPs, content of the nanocrystalline phase in the films, as well as to achieve excellent crystallinity, graphitization, uniformity and vertical alignment of the resulting nanostructures at substrate temperatures 300-500°C and low gas pressures (below 13.2 Pa). This study provides a simple and efficient plasma-enhanced chemical vapor deposition (PECVD) technique for the fabrication of vertically aligned CNTP arrays for electron field emitters.
Resumo:
This chapter describes decentralized data fusion algorithms for a team of multiple autonomous platforms. Decentralized data fusion (DDF) provides a useful basis with which to build upon for cooperative information gathering tasks for robotic teams operating in outdoor environments. Through the DDF algorithms, each platform can maintain a consistent global solution from which decisions may then be made. Comparisons will be made between the implementation of DDF using two probabilistic representations. The first, Gaussian estimates and the second Gaussian mixtures are compared using a common data set. The overall system design is detailed, providing insight into the overall complexity of implementing a robust DDF system for use in information gathering tasks in outdoor UAV applications.
Resumo:
Existing evidence for successful silvicultural control of Hypsipyla spp. is conflicting and to a large extent anecdotal. Levels of attack have been correlated with factors such as shade, planting density, species mixtures, site characteristics, etc. These factors have often been poorly defined and are usually interdependent. The actual mechanisms that determine whether or not Hypsipyla spp. adversely affects plants we define as host-finding, host suitability, host recovery and natural enemies. These mechanisms can be influenced by the silvicultural techniques applied to a stand. Success of silvicultural techniques can usually be attributed to more than one mechanism and it is difficult to assess which is most the important for minimising the impact of Hypsipyla as these analytical data are lacking. This highlights the need for further research on silvicultural methods for controlling Hypsipyla spp. However, several silvicultural techniques that are briefly described show promise for improving the performance of future plantations. Examples of silvicultural control are reviewed with reference to these mechanisms.
Resumo:
Aflatoxin B1, a potently carcinogenic fungal metabolite, is converted to the biologically active form by chemical oxidation using dimethyldioxirane and enzymatically by cytochrome P450 mixed-function oxidases. Both processes give rise to mixtures of the exo- and endo-8,9-epoxides. Methanolysis studies reveal exclusive trans opening of both epoxides under neutral conditions in CH3OH and CH3OH/H2O mixtures; an SN2 mechanism is postulated. Under acidic conditions, the exo isomer gives mixtures of trans and cis solvolysis products, suggesting that the reaction is, at least in part, SN1; the endo isomer gives only the trans product. The exo isomer reacts with DNA by attack of the nitrogen atom at the 7 position of guanine on C8 of the epoxide to give the trans adduct; the endo epoxide fails to form an adduct at this or any other site in DNA. The exo isomer is strongly mutagenic in a base-pair reversion assay employing Salmonella typhimurium; the endo isomer is essentially nonmutagenic. Aflatoxin B1 and its derivatives intercalate in DNA. These results are consistent with a mechanism in which intercalation of the exo epoxide optimally orients the epoxide for an SN2 reaction with guanine but intercalation of the endo isomer places the epoxide in an orientation which precludes reaction. Thus, while the exo epoxide is a potent mutagen, the endo epoxide fails to react with DNA.
Resumo:
Diatomite, a porous non-metal mineral, was used as support to prepare TiO2/diatomite composites by a modified sol–gel method. The as-prepared composites were calcined at temperatures ranging from 450 to 950 _C. The characterization tests included X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption measurements. The XRD analysis indicated that the binary mixtures of anatase and rutile exist in the composites. The morphology analysis confirmed the TiO2 particles were uniformly immobilized on the surface of diatom with a strong interfacial anchoring strength, which leads to few drain of photocatalytic components during practical applications. In further XPS studies of hybrid catalyst, we found the evidence of the presence of Ti–O–Si bond and increased percentage of surface hydroxyl. In addition, the adsorption capacity and photocatalytic activity of synthesized TiO2/diatomite composites were evaluated by studying the degradation kinetics of aqueous Rhodamine B under UV-light irradiation. The photocatalytic degradation was found to follow pseudo-first order kinetics according to the Langmuir–Hinshelwood model. The preferable removal efficiency was observed in composites by 750 _C calcination, which is attributed to a relatively appropriate anatase/rutile mixing ratio of 90/10.