969 resultados para metal oxide


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid oxide fuel cell (SOFC) is an electrochemical device that converts chemical energy into electric power with high efficiency. Traditional SOFC has its disadvantages, such as redox cycling instability and carbon deposition while using hydrocarbon fuels. It is because traditional SOFC uses Ni-cermet as anode. In order to solve these problems, ceramic anode is a good candidate to replace Ni. However, the conductivity of most ceramic anode materials are much lower than Ni metal, and it introduces high ohmic resistance. How to increase the conductivity is a hot topic in this research field. Based on our proposed mechanism, several types of ceramic materials have been developed. Vanadium doped perovskite, Sr1-x/2VxTi1-xO3 (SVT) and Sr0.2Na0.8Nb1-xVxO3 (SNNV), achieved the conductivity as high as 300 S*cm-1 in hydrogen, without any high temperature reduction. GDC electrolyte supported cell was fabricated with Sr0.2Na0.8Nb0.9V0.1O3 and the performance was measured in hydrogen and methane respectively. Due to vanadium’s intrinsic problems, the anode supported cell is not easy. Fe doped double perovskite Sr2CoMoO6 (SFCM) was also developed. By carefully doping Fe, the conductivity was improved over one magnitude, without any vigorous reducing conditions. SFCM anode supported cell was successfully fabricated with GDC as the electrolyte. By impregnating Ni-GDC nano particles into the anode, the cell can be operated at lower temperatures while having higher performance than the traditional Ni-cermet cells. Meanwhile, this SFCM anode supported SOFC has long term stability in the reformate containing methane. During the anode development, cathode improvement caused by a thin Co-GDC layer was observed. By adding this Co-GDC layer between the electrolyte and the cathode, the interfacial resistance decreases due to fast oxygen ion transport. This mechanism was confirmed via isotope exchange. This Co-GDC layer works with multiple kinds of cathodes and the modified cell’s performance is 3 times as the traditional Ni-GDC cell. With this new method, lowering the SOFC operation temperature is feasible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of molecular sensors plays a very important role within nanotechnology and especially in the development of different devices for biomedical applications. Biosensors can be classified according to various criteria such as the type of interaction established between the recognition element and the analyte or the type of signal detection from the analyte (transduction). When Raman spectroscopy is used as an optical transduction technique the variations in the Raman signal due to the physical or chemical interaction between the analyte and the recognition element has to be detected. Therefore any significant improvement in the amplification of the optical sensor signal represents a breakthrough in the design of molecular sensors. In this sense, Surface-Enhanced Raman Spectroscopy (SERS) involves an enormous enhancement of the Raman signal from a molecule in the vicinity of a metal surface. The main objective of this work is to evaluate the effect of a monolayer of graphene oxide (GO) on the distribution of metal nanoparticles (NPs) and on the global SERS enhancement of paminothiophenol (pATP) and 4-mercaptobenzoic acid (4MBA) adsorbed on this substrate. These aromatic bifunctional molecules are able to interact to metal NPs and also they offer the possibility to link with biomolecules. Additionally by decorating Au or Ag NPs on graphene sheets, a coupled EM effect caused by the aggregation of the NPs and strong electronic interactions between Au or Ag NPs and the graphene sheets are considered to be responsible for the significantly enhanced Raman signal of the analytes [1-2]. Since there are increasing needs for methods to conduct reproducible and sensitive Raman measurements, Grapheneenhanced Raman Scattering (GERS) is emerging as an important method [3].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first half of this thesis, a new robotic instrument called a scanning impedance probe is presented that can acquire electrochemical impedance spectra in automated fashion from hundreds of thin film microelectrodes with systematically varied properties. Results from this instrument are presented for three catalyst compositions that are commonly considered for use in state-of-the-art solid oxide fuel cell cathodes. For (La0.8Sr0.2)0.95MnO3+δ (LSM), the impedance spectra are well fit by a through-the-film reaction pathway. Transport rates are extracted, and the surface activity towards oxygen reduction is found to be correlated with the number of exposed grain boundary sites, suggesting that grain boundaries are more surface-active than grains. For La0.5Sr0.5CoO3-δ (LSC), the surface activity degrades ~50x initially and then stabilizes at a comparable activity to that of previously measured Ba0.5Sr0.5Co0.8Fe0.2O3-δ films. For Sr0.06Nb0.06Bi1.87O3 (SNB), an example of a doped bismuth oxide, the activity of the metal-SNB boundary is measured.

In the second half of this thesis, SrCo0.9Nb0.1O3-δ is selected as a case study of perovskites containing Sr and Co, which are the most active oxygen reduction catalysts known. Several bulk properties are measured, and synchrotron data are presented that provide strong evidence of substantial cobalt-oxygen covalency at high temperatures. This covalent bonding may be the underlying source of the high surface activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 Silveira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the metal precursor (presence or absence of chlorine) on the preferential oxidation of CO in the presence of H2 over Pt/CeO2 catalysts has been studied. The catalysts are prepared using (Pt(NH3)4)(NO3)2 and H2PtCl6, as precursors, in order to ascertain the effect of the chlorine species on the chemical properties of the support and on the catalytic behavior of these systems in the PROX reaction. The results show that chloride species exert an important effect on the redox properties of the oxide support due to surface chlorination. Consequently, the chlorinated catalyst exhibits a poorer catalytic activity at low temperatures compared with the chlorine-free catalyst, and this is accompanied by a higher selectivity to CO2 even at high reaction temperatures. It is proposed that the CO oxidation mechanism follows different pathways on each catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study successfully developed orally deliverable multimodular zinc (Zn) iron oxide (Fe3O4)-saturated bovine lactoferrin (bLf)-loaded polymeric nanocapsules (NCs), and evaluated their theranostic potential (antitumor efficacy, magnetophotothermal efficacy and imaging capability) in an in vivo human xenograft CpG-island methylator phenotype (CIMP)-1(+)/CIMP2(-)/chromosome instability-positive colonic adenocarcinoma (Caco2) and claudin-low, triple-negative (ER(-)/PR(-)/HER2(-); MDA-MB-231) breast cancer model. Mice fed orally on the Zn-Fe-bLf NC diet showed downregulation in tumor volume and complete regression in tumor volume after 45 days of feeding. In human xenograft colon cancer, vehicle-control NC diet-group (n=5) mice showed a tumor volume of 52.28±11.55 mm(3), and Zn-Fe-bLf NC diet (n=5)-treated mice had a tumor-volume of 0.10±0.073 mm(3). In the human xenograft breast cancer model, Zn-Fe-bLf NC diet (n=5)-treated mice showed a tumor volume of 0.051±0.062 mm(3) within 40 days of feeding. Live mouse imaging conducted by near-infrared fluorescence imaging of Zn-Fe-bLf NCs showed tumor site-specific localization and regression of colon and breast tumor volume. Ex vivo fluorescence-imaging analysis of the vital organs of mice exhibited sparse localization patterns of Zn-Fe-bLf NCs and also confirmed tumor-specific selective localization patterns of Zn-Fe-bLf NCs. Dual imaging using magnetic resonance imaging and computerized tomography scans revealed an unprecedented theranostic ability of the Zn-Fe-bLf NCs. These observations warrant consideration of multimodular Zn-Fe-bLf NCs for real-time cancer imaging and simultaneous cancer-targeted therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent thin films can now be site-selectively patterned and positioned on surface using mask-defined electrodeposition of one oxide and overcoating with a different solution-processed oxide, followed by thermal annealing. Annealing allows an interdiffusion process to create a new oxide that is entirely transparent. A primary electrodeposited oxide can be patterned and the secondary oxide coated over the entire substrate to form high color contrast coplanar thin film tertiary oxide. The authors also detail the phase formation and chemical state of the oxide and how the nature of the electrodeposited layer and the overlayer influence the optical clearing of the patterned oxide film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst. Herein, we report a significant reduction of bilayer resistance, achieved by forming stable, ultrathin (<1.3 nm) SiO2 layers, allowing fabrication of water splitting photoanodes with hole conductances near the maximum achievable with the given catalyst and Si substrate. Three methods for controlling the SiO2 interlayer thickness on the Si(100) surface for ALD-TiO2 protected anodes were employed: (1) TiO2 deposition directly on an HF-etched Si(100) surface, (2) TiO2 deposition after SiO2 atomic layer deposition on an HF-etched Si(100) surface, and (3) oxygen scavenging, post-TiO2 deposition to decompose the SiO2 layer using a Ti overlayer. Each of these methods provides a progressively superior means of reliably thinning the interfacial SiO2 layer, enabling the fabrication of efficient and stable water oxidation silicon anodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this communication, we report an electrocatalyst for full water splitting based on CoP2 nanoparticles grown on reduced graphene oxide sheets (CoP2/RGO). As a novel non-noble-metal electrocatalyst, CoP2/RGO shows an ultra-high catalytic activity in alkaline electrolyte which only requires a cell voltage of 1.56 V to attain a current density of 10 mA cm-2 for full water splitting.