921 resultados para mechanics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex numbers appear in the Hilbert space formulation of quantum mechanics, but not in the formulation in phase space. Quantum symmetries are described by complex, unitary or antiunitary operators defining ray representations in Hilbert space, whereas in phase space they are described by real, true representations. Equivalence of the formulations requires that the former representations can be obtained from the latter and vice versa. Examples are given. Equivalence of the two formulations also requires that complex superpositions of state vectors can be described in the phase space formulation, and it is shown that this leads to a nonlinear superposition principle for orthogonal, pure-state Wigner functions. It is concluded that the use of complex numbers in quantum mechanics can be regarded as a computational device to simplify calculations, as in all other applications of mathematics to physical phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135, and 65 cells/mm(2)). These cell densities were correlated with the graft formation success rate (50%, 25%, and 0%). Single-bond rupture forces at a loading rate of 450 pN/s were quantified by adhesion of trapped 2-mm spheres to macrophages. Rupture force distributions were dominated by nonspecific adhesion (forces, < 40 pN). On polystyrene, preadsorption of fibronectin or presence of serum proteins in the cell medium significantly enhanced adhesion strength from a mean rupture force of 20 pN to 28 pN or 33 pN, respectively. The enhancement of adhesion by fibronectin and serum is additive (mean rupture force of 43 pN). The fraction of specific binding forces in the presence of serum was similar for polystyrene and polymethyl-methacrylate, but specific binding forces were not observed for silica. Again, we found correlation to in vivo experiments, where the density of adherent cells is higher on polystyrene than on silica templates, and can be further enhanced by fibronectin adsorption. These findings show that in vitro adhesion testing can be used for template optimization and to substitute for in-vivo experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A formalism for modelling the dynamics of Genetic Algorithms (GAs) using methods from statistical mechanics, originally due to Prugel-Bennett and Shapiro, is reviewed, generalized and improved upon. This formalism can be used to predict the averaged trajectory of macroscopic statistics describing the GA's population. These macroscopics are chosen to average well between runs, so that fluctuations from mean behaviour can often be neglected. Where necessary, non-trivial terms are determined by assuming maximum entropy with constraints on known macroscopics. Problems of realistic size are described in compact form and finite population effects are included, often proving to be of fundamental importance. The macroscopics used here are cumulants of an appropriate quantity within the population and the mean correlation (Hamming distance) within the population. Including the correlation as an explicit macroscopic provides a significant improvement over the original formulation. The formalism is applied to a number of simple optimization problems in order to determine its predictive power and to gain insight into GA dynamics. Problems which are most amenable to analysis come from the class where alleles within the genotype contribute additively to the phenotype. This class can be treated with some generality, including problems with inhomogeneous contributions from each site, non-linear or noisy fitness measures, simple diploid representations and temporally varying fitness. The results can also be applied to a simple learning problem, generalization in a binary perceptron, and a limit is identified for which the optimal training batch size can be determined for this problem. The theory is compared to averaged results from a real GA in each case, showing excellent agreement if the maximum entropy principle holds. Some situations where this approximation brakes down are identified. In order to fully test the formalism, an attempt is made on the strong sc np-hard problem of storing random patterns in a binary perceptron. Here, the relationship between the genotype and phenotype (training error) is strongly non-linear. Mutation is modelled under the assumption that perceptron configurations are typical of perceptrons with a given training error. Unfortunately, this assumption does not provide a good approximation in general. It is conjectured that perceptron configurations would have to be constrained by other statistics in order to accurately model mutation for this problem. Issues arising from this study are discussed in conclusion and some possible areas of further research are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the performance of error-correcting codes, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability is obtained for finite K and C. We examine the finite-temperature case to assess the use of simulated annealing for decoding and extend the analysis to accommodate other types of noisy channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using methods of Statistical Physics, we investigate the generalization performance of support vector machines (SVMs), which have been recently introduced as a general alternative to neural networks. For nonlinear classification rules, the generalization error saturates on a plateau, when the number of examples is too small to properly estimate the coefficients of the nonlinear part. When trained on simple rules, we find that SVMs overfit only weakly. The performance of SVMs is strongly enhanced, when the distribution of the inputs has a gap in feature space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using techniques from Statistical Physics, the annealed VC entropy for hyperplanes in high dimensional spaces is calculated as a function of the margin for a spherical Gaussian distribution of inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unsupervised learning procedure based on maximizing the mutual information between the outputs of two networks receiving different but statistically dependent inputs is analyzed (Becker S. and Hinton G., Nature, 355 (1992) 161). By exploiting a formal analogy to supervised learning in parity machines, the theory of zero-temperature Gibbs learning for the unsupervised procedure is presented for the case that the networks are perceptrons and for the case of fully connected committees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of investigators have studied the application of oscillatory energy to a metal undergoing plastic deformation. Their results have shown that oscillatory stresses reduce both the stress required to initiate plastic deformation and the friction forces between the tool and workpiece. The first two sections in this thesis discuss historically and technically the devolopment of the use of oscillatory energy techniques to aid metal forming with particular reference to wire drawing. The remainder of the thesis discusses the research undertaken to study the effect of applying longitudinal oscillations to wire drawing. Oscillations were supplied from an electric hydraulic vibrator at frequencies in the range 25 to 500 c/s., and drawing tests were performed at drawing speeds up to 50 ft/m. on a 2000 lbf. bull-block. Equipment was designed to measure the drawing force, drawing torque, amplitude of die and drum oscillation and drawing speed. Reasons are given for selecting mild steel, pure and hard aluminium, stainless steel and hard copper as the materials to be drawn, and the experimental procedure and calibration of measuring equipment arc described. Results show that when oscillatory stresses are applied at frequencies within the range investigated : (a) There is no reduction in the maximum drawing load. (b) Using sodium stearate lubricant there is a negligible reduction in the coefficient of friction between the die and wire. (c) Pure aluminium does not absorb sufficient oscillatory energy to ease the movement of dislocations. (d) Hard aluminium is not softened by oscillatory energy accelerating the diffusion process. (e) Hard copper is not cyclically softened. A vibration analysis of the bull-block and wire showed that oscillatory drawiing in this frequency range, is a mechanical process of straining; and unstraining the drawn wire, and is dependent upon the stiffness of the material being drawn and the drawing machine. Directions which further work should take are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variation of low-density parity check (LDPC) error-correcting codes defined over Galois fields (GF(q)) is investigated using statistical physics. A code of this type is characterised by a sparse random parity check matrix composed of C non-zero elements per column. We examine the dependence of the code performance on the value of q, for finite and infinite C values, both in terms of the thermodynamical transition point and the practical decoding phase characterised by the existence of a unique (ferromagnetic) solution. We find different q-dependence in the cases of C = 2 and C ≥ 3; the analytical solutions are in agreement with simulation results, providing a quantitative measure to the improvement in performance obtained using non-binary alphabets.