862 resultados para malware classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affiliation: Centre Robert-Cedergren de l'Université de Montréal en bio-informatique et génomique & Département de biochimie, Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les employés d’un organisme utilisent souvent un schéma de classification personnel pour organiser les documents électroniques qui sont sous leur contrôle direct, ce qui suggère la difficulté pour d’autres employés de repérer ces documents et la perte possible de documentation pour l’organisme. Aucune étude empirique n’a été menée à ce jour afin de vérifier dans quelle mesure les schémas de classification personnels permettent, ou même facilitent, le repérage des documents électroniques par des tiers, dans le cadre d’un travail collaboratif par exemple, ou lorsqu’il s’agit de reconstituer un dossier. Le premier objectif de notre recherche était de décrire les caractéristiques de schémas de classification personnels utilisés pour organiser et classer des documents administratifs électroniques. Le deuxième objectif consistait à vérifier, dans un environnement contrôlé, les différences sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction du schéma de classification utilisé. Nous voulions vérifier s’il était possible de repérer un document avec la même efficacité, quel que soit le schéma de classification utilisé pour ce faire. Une collecte de données en deux étapes fut réalisée pour atteindre ces objectifs. Nous avons d’abord identifié les caractéristiques structurelles, logiques et sémantiques de 21 schémas de classification utilisés par des employés de l’Université de Montréal pour organiser et classer les documents électroniques qui sont sous leur contrôle direct. Par la suite, nous avons comparé, à partir d'une expérimentation contrôlée, la capacité d’un groupe de 70 répondants à repérer des documents électroniques à l’aide de cinq schémas de classification ayant des caractéristiques structurelles, logiques et sémantiques variées. Trois variables ont été utilisées pour mesurer l’efficacité du repérage : la proportion de documents repérés, le temps moyen requis (en secondes) pour repérer les documents et la proportion de documents repérés dès le premier essai. Les résultats révèlent plusieurs caractéristiques structurelles, logiques et sémantiques communes à une majorité de schémas de classification personnels : macro-structure étendue, structure peu profonde, complexe et déséquilibrée, regroupement par thème, ordre alphabétique des classes, etc. Les résultats des tests d’analyse de la variance révèlent des différences significatives sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction des caractéristiques structurelles, logiques et sémantiques du schéma de classification utilisé. Un schéma de classification caractérisé par une macro-structure peu étendue et une logique basée partiellement sur une division par classes d’activités augmente la probabilité de repérer plus rapidement les documents. Au plan sémantique, une dénomination explicite des classes (par exemple, par utilisation de définitions ou en évitant acronymes et abréviations) augmente la probabilité de succès au repérage. Enfin, un schéma de classification caractérisé par une macro-structure peu étendue, une logique basée partiellement sur une division par classes d’activités et une sémantique qui utilise peu d’abréviations augmente la probabilité de repérer les documents dès le premier essai.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un résumé en anglais est également disponible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper I criticize Alison Jaggar’s descriptions of feminist political theories. I propose an alternative classification of feminist theories that I think more accurately reflects the multiplication of feminist theories and philosophies. There are two main categories, “street theory” and academic theories, each with two sub-divisions, political spectrum and “differences” under street theory, and directly and indirectly political analyses under academic theories. My view explains why there are no radical feminists outside of North America and why there are so few socialist feminists inside North America. I argue, controversially, that radical feminism is a radical version of liberalism. I argue that “difference” feminist theories – theory by and about feminists of colour, queer feminists, feminists with disabilities and so on – belong in a separate sub-category of street theory, because they’ve had profound effects on feminist activism not tracked by traditional left-to-right classifications. Finally, I argue that, while academic feminist theories such as feminist existentialism or feminist sociological theory are generally unconnected to movement activism, they provide important feminist insights that may become importanby showing the advantages of my classification over Jaggar’s views.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les modèles à sur-représentation de zéros discrets et continus ont une large gamme d'applications et leurs propriétés sont bien connues. Bien qu'il existe des travaux portant sur les modèles discrets à sous-représentation de zéro et modifiés à zéro, la formulation usuelle des modèles continus à sur-représentation -- un mélange entre une densité continue et une masse de Dirac -- empêche de les généraliser afin de couvrir le cas de la sous-représentation de zéros. Une formulation alternative des modèles continus à sur-représentation de zéros, pouvant aisément être généralisée au cas de la sous-représentation, est présentée ici. L'estimation est d'abord abordée sous le paradigme classique, et plusieurs méthodes d'obtention des estimateurs du maximum de vraisemblance sont proposées. Le problème de l'estimation ponctuelle est également considéré du point de vue bayésien. Des tests d'hypothèses classiques et bayésiens visant à déterminer si des données sont à sur- ou sous-représentation de zéros sont présentées. Les méthodes d'estimation et de tests sont aussi évaluées au moyen d'études de simulation et appliquées à des données de précipitation agrégées. Les diverses méthodes s'accordent sur la sous-représentation de zéros des données, démontrant la pertinence du modèle proposé. Nous considérons ensuite la classification d'échantillons de données à sous-représentation de zéros. De telles données étant fortement non normales, il est possible de croire que les méthodes courantes de détermination du nombre de grappes s'avèrent peu performantes. Nous affirmons que la classification bayésienne, basée sur la distribution marginale des observations, tiendrait compte des particularités du modèle, ce qui se traduirait par une meilleure performance. Plusieurs méthodes de classification sont comparées au moyen d'une étude de simulation, et la méthode proposée est appliquée à des données de précipitation agrégées provenant de 28 stations de mesure en Colombie-Britannique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La thèse présente une description géométrique d’un germe de famille générique déployant un champ de vecteurs réel analytique avec un foyer faible à l’origine et son complexifié : le feuilletage holomorphe singulier associé. On montre que deux germes de telles familles sont orbitalement analytiquement équivalents si et seulement si les germes de familles de difféomorphismes déployant la complexification de leurs fonctions de retour de Poincaré sont conjuguées par une conjugaison analytique réelle. Le “caractère réel” de la famille correspond à sa Z2-équivariance dans R^4, et cela s’exprime comme l’invariance du plan réel sous le flot du système laquelle, à son tour, entraîne que l’expansion asymptotique de la fonction de Poincaré est réelle quand le paramètre est réel. Le pullback du plan réel après éclatement par la projection monoidal standard intersecte le feuilletage en une bande de Möbius réelle. La technique d’éclatement des singularités permet aussi de donner une réponse à la question de la “réalisation” d’un germe de famille déployant un germe de difféomorphisme avec un point fixe de multiplicateur égal à −1 et de codimension un comme application de semi-monodromie d’une famille générique déployant un foyer faible d’ordre un. Afin d’étudier l’espace des orbites de l’application de Poincaré, nous utilisons le point de vue de Glutsyuk, puisque la dynamique est linéarisable auprès des points singuliers : pour les valeurs réels du paramètre, notre démarche, classique, utilise une méthode géométrique, soit un changement de coordonée (coordonée “déroulante”) dans lequel la dynamique devient beaucoup plus simple. Mais le prix à payer est que la géométrie locale du plan complexe ambiante devient une surface de Riemann, sur laquelle deux notions de translation sont définies. Après avoir pris le quotient par le relèvement de la dynamique nous obtenons l’espace des orbites, ce qui s’avère être l’union de trois tores complexes plus les points singuliers (l’espace résultant est non-Hausdorff). Les translations, le caractère réel de l’application de Poincaré et le fait que cette application est un carré relient les différentes composantes du “module de Glutsyuk”. Cette propriété implique donc le fait qu’une seule composante de l’invariant Glutsyuk est indépendante.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durant les dernières décennies, l’occurrence des catastrophes naturelles a été fortement à la hausse. En effet, les catastrophes naturelles sont devenues de plus en plus fréquentes. En fait, ces risques dévastateurs ont touché durant les années précédentes différents pays dans des zones très diversifiées et continueront très probablement à être de réelles menaces dans le monde. Puisqu’aucun pays n’est à l’abri des catastrophes naturelles, il s’avère alors utile d’étudier les facteurs déterminants de leur survenue notamment avec la restriction de leurs périodes de retour et donc l’augmentation de leurs chances d’occurrence. Il nous a donc semblé opportun de tester les facteurs sous-jacents de la survenue des catastrophes naturelles. Notre travail se base sur l’application d’un réseau neuronal de type perceptron multicouche pour prédire le nombre des catastrophes naturelles à partir des variables les plus connues théoriquement. Ainsi, nous allons utiliser ce modèle neuronal pour effectuer l’analyse de sensitivité. Cette dernière permet de classer les variables explicatives selon l’importance de leur contribution dans la détermination du nombre de catastrophes naturelles comptabilisées durant la période d’étude. Les résultats obtenus ont montré que le réseau retenu peut prédire le nombre des catastrophes naturelles. De même, les différentes variables possèdent un effet considérable sur la sortie du réseau neuronal mais selon différents ordres d’importance. De ce fait, toutes ces variables contribuent à l’explication d’un problème aussi complexe comme la survenue des catastrophes naturelles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’objectif de notre travail est de développer un outil d’analyse automatique des stades du sommeil basé sur les réseaux de neurones artificiels (RNA). Dans ce papier nous présentons notre démarche pour la conception de cet outil. La première difficulté consiste dans le choix de la représentation des signaux physiologiques et en particulier de l’électroencéphalogramme (EEG). Une fois la représentation adoptée, l’étape suivante est la conception du réseau de neurones optimal déterminé par un processus d’apprentissage et de validation sur les données issues d’un ensemble d'enregistrements de nuits de sommeil. Le résultat obtenu avec un taux de 63% de bonne classification pour six stades, nous incite à approfondir l’étude de cette problématique aux niveaux représentation et conception pour améliorer les performances de notre outil.