940 resultados para loniless in old age


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatic mutation accumulation has been implicated as a major cause of cancer and aging. By using a transgenic mouse model with a chromosomally integrated lacZ reporter gene, mutational spectra were characterized at young and old age in two organs greatly differing in proliferative activity, i.e., the heart and small intestine. At young age the spectra were nearly identical, mainly consisting of G·C to A·T transitions and 1-bp deletions. At old age, however, distinct patterns of mutations had developed. In small intestine, only point mutations were found to accumulate, including G·C to T·A, G·C to C·G, and A·T to C·G transversions and G·C to A·T transitions. In contrast, in heart about half of the accumulated mutations appeared to be large genome rearrangements, involving up to 34 centimorgans of chromosomal DNA. Virtually all other mutations accumulating in the heart appeared to be G·C to A·T transitions at CpG sites. These results suggest that distinct mechanisms lead to organ-specific genome deterioration and dysfunction at old age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An association of Chlamydia pneumoniae with atherosclerosis of coronary and carotid arteries and aorta has been found by seroepidemiology and by demonstration of the organism in atheromata. Age-matched control tissue from persons without atherosclerosis was usually not available. We studied autopsy tissue from young persons, many with no atherosclerosis, to determine whether C. pneumoniae is present in atheroma in young persons with early atherosclerosis and to compare the findings in age- and sex-matched persons without atherosclerosis. A left anterior descending coronary artery sample, formalin-fixed, from 49 subjects, 15-34 years of age, from the multicenter study called Pathobiological Determinants of Atherosclerosis in Youth (PDAY), was examined by immunocytochemistry and the polymerase chain reaction (PCR) for the presence of C. pneumoniae and by PCR for cytomegalovirus. A hematoxylin/eosin-stained section was used to determine disease present in the studied sample. Seven of the artery samples were found to have atheromatous plaque, 11 had intimal thickening, and 31 had no lesions. Eight of the samples were positive for C. pneumoniae by immunocytochemistry (n = 7) and/or PCR (n = 3). Six of the 7 (86%) atheroma, 2 of the 11 (18%) with intimal thickening, and none of the 31 normal-appearing coronary samples were positive. Four were positive by PCR for cytomegalovirus, 2 from diseased arteries and 2 from normal arteries. Examination of the adjacent left coronary artery sample with a fat stain found abnormalities in 25 of the patients, but 19 still showed no evidence of atherosclerosis as a result of either examination. Thus, C. pneumoniae is found in coronary lesions in young adults with atherosclerosis but is not found in normal-appearing coronary arteries of both persons with and without other evidence of atherosclerosis.