989 resultados para local validation
Resumo:
We study graphene, which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpart hosts robust chiral edge modes in spite of the gapless nature of the pristine graphene; such modes do not occur for armchair interfaces. Next we study the change in the local density of states (LDOS) due to the presence of an impurity in graphene with SOC and Zeeman field, and demonstrate that the Fourier transform of the LDOS close to the Dirac points can act as a measure of the strength of the spin-orbit coupling; in addition, for a specific distribution of impurity atoms, the LDOS is controlled by a destructive interference effect of graphene electrons which is a direct consequence of their Dirac nature. Finally, we study transport across junctions, which separates spin-orbit coupled graphene with Kane-Mele and Rashba terms from pristine graphene both in the presence and absence of a Zeeman field. We demonstrate that such junctions are generally spin active, namely, they can rotate the spin so that an incident electron that is spin polarized along some direction has a finite probability of being transmitted with the opposite spin. This leads to a finite, electrically controllable, spin current in such graphene junctions. We discuss possible experiments that can probe our theoretical predictions.
Resumo:
Mixing at low Reynolds number is usually due to diffusion and requires longer channel lengths for complete mixing. In order to reduce the mixing lengths, advective flow can be induced by varying the channel geometry. Additionally, in non-newtonian fluids, appropriate modifications to channel geometry can be used to aid the mixing process by capitalizing on their viscoelastic nature. Here we have exploited the advection and viscoelastic effects to implement a planar passive micro-mixer. Microfluidic devices incorporating different blend of mixing geometries were conceived. The optimum design was chosen based on the results of the numerical simulations performed in COMSOL. The chosen design had sudden expansion and contraction along with teeth patterns along the channel walls to improve mixing. Mixing of two different dyes was performed to validate the mixing efficiency. Particle dispersion experiments were also carried out. The results indicated effective mixing. In addition, the same design was also found to be compatible with electrical power free pumping mechanism like suction. The proposed design was then used to carry out on-chip chemical cell lysis with human whole blood samples to establish its use with non-newtonian fluids. Complete lysis of the erythrocytes was observed leaving behind the white blood cells at the outlet.
Maintaining local displacive disorders in Na0.5Bi0.5TiO3 piezoceramics by K0.5Bi0.5TiO3 substitution
Resumo:
A comprehensive global and local structural characterization using X-ray and neutron diffraction, and EXAFS have been performed to investigate the effect of electrical poling on the structure of (1-x)Na0.5Bi0.5TiO3-(x)K0.5Bi0.5TiO3 compositions. While the annealed samples showed definite indication of presence of local displacive disorders in all the compositions studied (0
Resumo:
A two-dimensional axisymmetric numerical model is presented to study the influence of local magnetic fields on P-doped Si floating zone melting crystal growth in microgravity. The model is developed based on the finite difference method in a boundary-fitted curvilinear coordinate system. Extensive numerical simulations are carried out, and parameters studied include the curved growth interface shape and the magnetic field configurations. Computed results show that the local magnetic field is more effective in reducing the impurity concentration nonuniformity at the growth interface in comparison with the longitudinal magnetic field. Moreover, the curved growth interface causes more serious impurity concentration nonuniformity at the growth interface than the case with a planar growth interface.
Resumo:
Piezoelectric actuators are mounted on both sides of a rectangular wing model. Possibility of the improvement of aircraft rolling power is investigated. All experiment projects, including designing the wind tunnel model, checking the material constants, measuring the natural frequencies and checking the effects of actuators, guarantee the correctness and precision of the finite element model. The wind tunnel experiment results show that the calculations coincide with the experiments. The feasibility of fictitious control surface is validated.
Resumo:
Hydrogen rearrangements at the H*2 complex are used as a model of low energy, local transitions in the two-hydrogen density of states of hydrogenated amorphous silicon (a-Si:H). These are used to account for the low activation energy motion of H observed by nuclear magnetic resonance, the low energy defect annealing of defects formed by bias stress in thin film transistors, and the elimination of hydrogen from the growth zone during the low temperature plasma deposition of a-Si:H. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The pulsed liquid fluidized bed was studied using numerical simulation and experimental methods, The area-averaged two-fluid model (TFM) was used to simulate the pulsed fluidization. The bed expansion and collapse processes were simulated first and the phenomena obtained from the calculation were consistent with our previous experiments and observations. In the pulsed fluidization, the variation of bed height, the variations of particle velocity and concentration distribution were obtained and analyzed. Experiments were carried out to validate the simulation results. The pressure variation with time at different locations was measured using pressure transducers and compared with the simulated results. The variations of bed height and particle concentration distribution were recorded using a digital video camera recorder. The results were consistent with the simulation results as a whole.
Resumo:
A reliable validation based on the optical flow visualization for numerical simulations of complex flowfields is addressed in this paper. Several test cases, including two-dimensional, axisymmetric and three-dimensional flowfields, were presented to demonstrate the effectiveness of the validation and gain credibility of numerical solutions of complex flowfields. In the validation, images of these flowfields were constructed from numerical results based on the principle of the optical flow visualization, and compared directly with experimental interferograms. Because both experimental and numerical results are of identical physical representation, the agreement between them can be evaluated effectively by examining flow structures as well as checking discrepancies in density. The study shows that the reliable validation can be achieved by using the direct comparison between numerical and experiment results without any loss of accuracy in either of them.
Resumo:
Resumen: Este artículo se inscribe en investigaciones realizadas para Conicet sobre la incidencia del surgimiento de las facultades rosarinas de la Universidad Nacional del Litoral en la conformación de un sistema regional de innovación científica, y su relación con la dinámica local y la expansión de las redes profesionales. Centra su enfoque en uno de los articuladores del mencionado proceso, el doctor Artemio Zeno, quién fuera fundador de una nueva escuela en la práctica quirúrgica, catedrático titular de la Facultad de Ciencias Médicas de Rosario, empresario de la salud, promotor de publicaciones científicas y de vinculaciones con los principales institutos de investigación internacional, al punto de publicar y dirigir la Revista de Cirugía, del Sanatorio Británico, y crear la primera Fundación médica de Latinoamérica dedicada exclusivamente a becar investigadores de los países del cono sur que quisieran especializarse en la especialidad quirúrgica.
Resumo:
Compression, tension and high-velocity plate impact experiments were performed on a typical tough Zr41.2Ti13.8Cu10Ni12.5Be22.5 (Vit 1) bulk metallic glass (BMG) over a wide range of strain rates from similar to 10(-4) to 10(6) s(-1). Surprisingly, fine dimples and periodic corrugations on a nanoscale were also observed on dynamic mode I fracture surfaces of this tough Vit 1. Taking a broad overview of the fracture patterning of specimens, we proposed a criterion to assess whether the fracture of BMGs is essentially brittle or plastic. If the curvature radius of the crack tip is greater than the critical wavelength of meniscus instability [F. Spaepen, Acta Metall. 23 615 (1975); A.S. Argon and M. Salama, Mater. Sci. Eng. 23 219 (1976)], microscale vein patterns and nanoscale dimples appear on crack surfaces. However, in the opposite case, the local quasi-cleavage/separation through local atomic clusters with local softening in the background ahead of the crack tip dominates, producing nanoscale periodic corrugations. At the atomic cluster level, energy dissipation in fracture of BMGs is, therefore, determined by two competing elementary processes, viz. conventional shear transformation zones (STZs) and envisioned tension transformation zones (TTZs) ahead of the crack tip. Finally, the mechanism for the formation of nanoscale periodic corrugation is quantitatively discussed by applying the present energy dissipation mechanism.