975 resultados para lipid peroxidation (LPO)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO2. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO2, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO2 levels (control: 600 µatm, pH = 8.03; medium: 1000 µatm, pH = 7.85; high: 1800 µatm, pH = 7.64) up to 15 days, after which critical swimming speed (Ucrit), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress-superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism - total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO2 treatment and smaller larvae in medium pCO2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO2 treatment may indicate that at higher pCO2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO2 levels on organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The correlation between the type 1 diabetes mellitus and oxidative stress have been described in several studies, however its underlying mechanisms are not fully elucidated. The present work aimed to evaluate the effects of four weeks of streptozootocin-induced (STZ) diabetes in the redox homeostasis of rat hepatocytes. Thus, the liver of male Wistar rats from control and diabetic groups were collected and the activity and expression of antioxidant enzymes, as well the main markers of oxidative stress and content of H2O2 in these tissues were measured. The diabetes induced the activity of superoxide dismutase (SOD) and the gene expression of its mitochondrial isoform, SOD2. However, the expression of SOD1, the cytoplasmic isoform, was reduced by this disease. The activity and expression of catalase (CAT), as well the expression of glutathione peroxidase 1 (GPX1) and peroxiredoxin 4 (PRX4) were drastically reduced in the hepatocytes of diabetics rats. Even with this debility in the peroxidases mRNA expression, the content of H2O2 was reduced in the liver of diabetics rats when compared to the control group. The diabetes caused an increase of lipid peroxidation and a decrease of protein thiol content, showing that this disease causes distinct oxidative effects in different cell biomolecules. Our results indicate that four week of diabetes induced by STZ is already enough to compromise the enzymatic antioxidant systems of the hepatocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glucans are polysaccharides with different pharmacological and biological activities described. However, there are some reports about the activities of the glucan type α (alpha). In this context, a group of α-D-glucans called dextrans extracted from Leuconostoc mesenteroides bacteria, with molecular weights of 10 (D10), 40 (D40) and 147 (D147) kDa and their phosphorylated derivatives P10, P40 and P147, were evaluated as for their antioxidant, anticoagulant and immunomodulatory potential for the first time, in order to elucidate compounds with potent activities and low toxicity. Infrared spectroscopy analysis, monosaccharide composition and chemical dosages showed that these dextrans are the same polysaccharide, but with different molecular weights, besides confirming the success of phosphorylation. None presented with anticoagulant features. The reducing power test showed that D147 was twice as potent as other dextrans. On the other hand, all six samples showed similar activity (50%) when it came to scavenging the OH radical. To the superoxide ion scavenging, only D10 had a pronounced activity (50%). D40 was the single native dextran that presented with immunomodulatory features since it double stimulated the proliferation of murine macrophages (RAW 264.7) and double the release of nitric oxide by the cells, both in the absence and presence of lipopolysaccharides (LPS). In addition, D40 showed a greater scavenging activity (50%) for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%). On other hand, P147 showed the highest iron and copper ion chelation activity (~85%). P10 proved be the most effective compound to macrophage proliferation. The results point toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use, could be supplemented with phosphorylated derivatives. However, future studies with the D40 and other similarly dextrans are to confirm this hypothesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inflammatory bowel diseases is composed by a set of chronic and inflammatory disorders, among them is ulcerative colitis (UC). UC treatment is based on anti-inflammatory administration; however, this group of drugs clearly leads to development of undesirable side effects, what stimulate the search for new therapies alternatives. The aim of this study was to evaluate the effect of hydroalcholic Turnera subulata extract on acetic acid-induced acute UC in rats. UC was induced by 1 mL injection of 4% acetic acid via rectal in Wistar mouse. 42 animals were distributed among 6 experimental groups: Control, UC, Sulfasalazine 500 mg/Kg/day (SSZ), T. subulata 50mg/Kg/day (TS 50), T. subulata 100mg/Kg/day (TS 100), T. subulata 200mg/Kg/day (TS 200). Throughout the experiment, body weight, food and water ingestion was daily evaluated. At the end of the experiment, the animals were euthanized and a colon fragment was observed by macroscopic analysis. Colon fragments were also collected for microscopic analysis and oxidative stress evaluation. The means from each group was compared by ANOVA test with a significance level of 5% (p<0.05) using GraphPad Prism Software. As results, we can clearly observe that SSZ group had the greater body weight decrease among the groups throughout the experiments, 14.78%, as well as, the lowest food intake, 6.23 g of food/day. The animals treated with T. subulata extracts showed no important body weight loss when compared to control. UC group showed the highest tissue damage macroscope score, 6.5, while TS 50 showed the lowest tissue damage score: 1. Microscope evaluation showed the presence of edema, haemorraghia and ulceration in all group of animals, except for Control. Nevertheless, TS 50 showed the lowest inflammatory damage among all groups. Oxidative stress analysis revealed that T. subulata treatment modulate catalase and superoxide dismutase activity, we also observed a decrease in protein and lipid peroxidation in response to extract administration. Taken together, these results shows that T. subulata extract exerts anti-inflammatory and anti-oxidant effects on experimental UC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inflammatory bowel diseases is composed by a set of chronic and inflammatory disorders, among them is ulcerative colitis (UC). UC treatment is based on anti-inflammatory administration; however, this group of drugs clearly leads to development of undesirable side effects, what stimulate the search for new therapies alternatives. The aim of this study was to evaluate the effect of hydroalcholic Turnera subulata extract on acetic acid-induced acute UC in rats. UC was induced by 1 mL injection of 4% acetic acid via rectal in Wistar mouse. 42 animals were distributed among 6 experimental groups: Control, UC, Sulfasalazine 500 mg/Kg/day (SSZ), T. subulata 50mg/Kg/day (TS 50), T. subulata 100mg/Kg/day (TS 100), T. subulata 200mg/Kg/day (TS 200). Throughout the experiment, body weight, food and water ingestion was daily evaluated. At the end of the experiment, the animals were euthanized and a colon fragment was observed by macroscopic analysis. Colon fragments were also collected for microscopic analysis and oxidative stress evaluation. The means from each group was compared by ANOVA test with a significance level of 5% (p<0.05) using GraphPad Prism Software. As results, we can clearly observe that SSZ group had the greater body weight decrease among the groups throughout the experiments, 14.78%, as well as, the lowest food intake, 6.23 g of food/day. The animals treated with T. subulata extracts showed no important body weight loss when compared to control. UC group showed the highest tissue damage macroscope score, 6.5, while TS 50 showed the lowest tissue damage score: 1. Microscope evaluation showed the presence of edema, haemorraghia and ulceration in all group of animals, except for Control. Nevertheless, TS 50 showed the lowest inflammatory damage among all groups. Oxidative stress analysis revealed that T. subulata treatment modulate catalase and superoxide dismutase activity, we also observed a decrease in protein and lipid peroxidation in response to extract administration. Taken together, these results shows that T. subulata extract exerts anti-inflammatory and anti-oxidant effects on experimental UC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) consists of a non-toxic photosensitizing agent (FS) administration followed by a laser source resulting in a sequence of photochemical and photobiological processes that generate reactive oxygen species (ROS) that damaging cells. The present work evaluated the effects of PDT nanoemulsion-aluminum chloride phthalocyanine (AlClFc) mediated on malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, which represent indicators involved in oxidative stress and antioxidant defenses. For this purpose, this study used 120 female rats of the Rattus norvegicus species, Wistar race, divided into 5 groups: Healthy (H), with periodontal disease (PD), with periodontal disease and treatment with FS (F), with periodontal disease and treatment with the laser (L); and periodontal disease and treatment with PDT (FL). An experimental model for represent periodontal disease (PD) was induced by ligature (split-mouth). Seven days later the induction of PD, the treatments were instituted according to the groups. In the group treated with PDT was applied 40μl FS (5μM) followed by laser irradiation diode InGaAlP (660nm, 100J / cm2). The rats were sacrificed on the 7th and 28th day after treatment and tissue specimens were removed and subjected to histological, immunohistochemical methods and enzymatic colorimetric measurements with detection by UV / VIS spectroscopy. Inflammatory changes, connective tissue disorganization and alveolar bone loss were displaying in groups with PD induced. The enzyme dosages showed that MDA levels were higher in PD induced groups, with no statistically significant differences (p> 0.05). High levels of GSH were found in groups L (p = 0.028) and FL (p = 0.028) compared with PD group, with statistically significant differences. Immunohistochemistry for SOD showed higher immunostaining in L and FL groups, compared to the PD group without statistically significant differences (p> 0.05). GPx showed lower immunoreactivity in the DP group when compared to the other groups and statistically significant differences were observed between the DPxL groups (p <0.05). TFD administered in this experiment did not induce elevation of MDA levels significantly increased the GSH levels and showed intense immunostaining pada SOD and GPx, showing that this therapy does not accentuated lipid peroxidation, however, it was able to induce effects on the antioxidant defenses processes. The LBI therapy appeared to show photomodulatory promoting effects reduction of the MDA levels, increasing GSH levels and with intense immunostaining for SOD and GPx, demonstrating that laser therapy induced antioxidant effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Free radicals have been implicated in various pathological conditions such as, stroke, aging and ischemic heart disease (IHD), as well as neurodegenerative diseases like Alzheimer’s, Parkinson’s, and Huntington’s disease. The role of antioxidants in protection from the harmful effects of free radicals has long been recognized. Trapping extremely reactive free radicals and eliminating them from circulation has been shown to be effective in animal models. Nitrone-based free radical traps have been extensively explored in biological systems. Examples include nitrones such as PBN, NXY-059, MDL-101,002, DMPO and EMPO. However, these nitrones have extremely high oxidation potentials as compared to natural antioxidants such as Vitamin E (á-tocopherol), and glutathione. Becker et al. (1995) synthesized novel azulenyl nitrones, which were shown to have oxidation potentials much lower than that of any of the previously reported nitrone based spin traps. Another azulenyl nitrone derivative, stilbazulenyl nitrone (STAZN), was shown to have an even lower oxidation potential within the range of natural antioxidants. STAZN, a second generation free radical trap, was found to be markedly superior than the two most studied nitrones, PBN and NXY-059, in animal models of cerebral ischemia and in an in vitro assay of lipid peroxidation. In this study, a third generation azulenyl nitrone was synthesized with an electron donating group on the previously synthesized STAZN derivative with the aim to lower the oxidation potential even more. Pseudoazulenes, because of the presence of an annular heteroatom, have been reported to possess even lower oxidation potential than that of the azulenyl counterpart. Therefore, pseudoazulenyl nitrones were synthesized for the first time by extracting and elaborating valtrate from the roots of Centranthus ruber (Red valerian or Jupiter’s beard). Several pseudoazulenyl nitrones were synthesized by using a facile experimental protocol. The physical and biological properties of these pseudoazulenyl nitrones can be easily modified by simply changing the substituent on the heteroatom. Cyclic voltammetry experiments have shown that these pseudoazulenyl nitrones do indeed have low oxidation potentials. The oxidation potential of these nitrones was lowered even more by preparing derivatives bearing an electron donating group at the 3-position of the five membered ring of the pseudoazulenyl nitrone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification (OA) is predicted to play a major role in shaping species biogeography and marine biodiversity over the next century. We tested the effect of medium-term exposure to OA (pH 8.00, 7.30 and 6.70 for 30 d) on acid-base balance in the decapod crab Necora puber-a species that is known to possess good extracellular buffering ability during short-term exposure to hypercapnic conditions. To determine if crabs undergo physiological trade-offs in order to buffer their haemolymph, we characterised a number of fundamental physiological functions, i.e. metabolic rate, tolerance to heat, carapace and chelae [Ca2+] and [Mg2+], haemolymph [Ca2+] and [Mg2+], and immune response in terms of lipid peroxidation. Necora puber was able to buffer changes to extracellular pH over 30 d exposure to hypercapnic water, with no evidence of net shell dissolution, thus demonstrating that HCO3- is actively taken up from the surrounding water. In addition, tolerance to heat, carapace mineralization, and aspects of immune response were not affected by hypercapnic conditions. In contrast, whole-animal O2uptake significantly decreased with hypercapnia, while significant increases in haemolymph [Ca2+] and [Mg2+] and chelae [Mg2+] were observed with hypercapnia. Our results confirm that most physiological functions in N. puber are resistant to low pH/hypercapnia over a longer period than previously investigated, although such resistance comes at the expenses of metabolic rates, haemolymph chemistry and chelae mineralization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of environmental pollution on the homeostasis of sea turtles remains scarce, particularly in the southern Gulf of Mexico. As many municipalities do not rely on a waste treatment plant along the coastline of the Yucatan Peninsula, the vulnerability of these specimens could results enhanced. We searched for relationships between presence of organochlorine pesticides (OCP) and the level of several oxidative and pollutant stress indicators of the hawksbill sea turtle (Eretmochelys imbricata) during the egg-laying period 2010 at Punta Xen (Campeche, Mexico). Endosulfans, aldrin related (aldrin, endrin, dieldrin, endrin ketone, endrin aldehyde) and dichlorodiphenyldichloroethylene (DDT) families were detected in 17, 21 and 26 of the 30 sampled sea turtles, respectively. Significant correlation existed between the size of sea turtles with the concentration of methoxychlor, cholinesterase activity in plasma and heptachlors family, and catalase activity and hexachlorohexane family. Cholinesterase activity in washed erythrocytes and lipid peroxidation were positively correlated with glutathione reductase activity. Antioxidant enzyme actions seem adequate as no lipids damages were correlated with any OCPs. Future studies are necessary to evaluate the effect of OCPs on males of the area because of the significant detection of methoxychlor that target endocrine functioning and increase its concentration with size of the sea turtles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction of reducing sugars, such as aldose, with proteins and the subsequent molecular rearrangements, produces irreversible advanced glycation end-products (AGEs), a heterogeneous class of non-enzymatic glycated proteins or lipids. AGEs form cross-links, trap macromolecules and release reactive oxygen intermediates. AGEs are linked to aging, and increase in several related diseases. The aim of this study was to assess, in a murine macrophage cell line, J774A.1, the effects of 48 h of exposure to glycated serum containing a known amount of pentosidine, a well-known AGE found in the plasma and tissues of diabetic and uremic subjects. Fetal bovine serum was incubated with ribose (50 mm) for 7 days at 37 °C to obtain about 10 nmol/ml of pentosidine. The cytotoxic parameters studied were cell morphology and viability by neutral red uptake, lactate dehydrogenase release and tetrazolium salt test. In the medium and in the intracellular compartment, bound and free pentosidine were evaluated by HPLC, as sensitive and specific glycative markers, and thiobarbituric acid reactive substances (TBARs), as index of the extent of lipid peroxidation. Our results confirm that macrophages are able to take up pentosidine. It is conceivable that bound pentosidine is degraded and free pentosidine is released inside the cell and then into the medium. The AGE increase in the medium was combined with an increase in TBARs, meaning that an oxidative stress occurred; marked cytotoxic effects were observed, and were followed by the release of free pentosidine and TBARs into the culture medium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Advanced glycation end-products (AGEs) are linked to aging and correlated diseases. The aim of present study was to evaluate oxidative stress related parameters in J774A.1 murine macrophage cells during chronic exposure to a subtoxic concentration of AGE (5% ribose-glycated serum (GS)) and subsequently for 48 h to a higher dose (10% GS). No effects on cell viability were evident in either experimental condition. During chronic treatment, glycative markers (free and bound pentosidine) increased significantly in intra- and extracellular environments, but the production and release of thiobarbituric acid reactive substances (TBARs), as an index of lipid peroxidation, underwent a time-dependent decrease. Exposure to 10% GS evidenced that glycative markers rose further, while TBARs elicited a cellular defence against oxidative stress. Nonadapted cultures showed an accumulation of AGEs, a marked oxidative stress, and a loss of viability. During 10% GS exposure, reduced glutathione levels in adapted cultures remained constant, as did the oxidized glutathione to reduced glutathione ratio, while nonadapted cells showed a markedly increased redox ratio. A constant increase of heat shock protein 70 (HSP70) mRNA was observed in all experimental conditions. On the contrary, HSP70 expression became undetectable for a longer exposure time; this could be due to the direct involvement of HSP70 in the refolding of damaged proteins. Our findings suggest an adaptive response of macrophages to subtoxic doses of AGE, which could constitute an important factor in the spread of damage to other cellular types during aging.Key words: in vitro cytotoxicity, AGE, pentosidine, glycoxidation, oxidative stress, TBARs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La muqueuse intestinale est exposée à des agents oxydants provenant de l’ingestion d’aliments modifiés, de cellules immuno-inflammatoires et de la flore intestinale. Une diète élevée en fruits et légumes peut diminuer le stress oxydant (SOx) ainsi que l’inflammation via plusieurs mécanismes. Ces effets bénéfiques peuvent être attribuables à leur contenu élevé en polyphénols. La première étude de mon doctorat consistait à tester l’hypothèse que les polyphénols extraits de pelures de pomme (DAPP) pouvaient diminuer le stress oxydant et l'inflammation impliqués dans les maladies inflammatoires de l'intestin (MII). Nous avons caractérisé les polyphénols des DAPP par spectrométrie de masse (LC-MS) et examiné leur potentiel antioxydant et anti-inflammatoire au niveau des cellules intestinales. L’identification des structures chimiques des polyphénols a été effectuée par LC-MS. Le SOx a été induit par l’ajout du complexe fer/ascorbate (Fe/Asc, 200 µM/2 mM) et l’inflammation par la lipopolysaccharide (LPS, 200µg/mL) à des cellules intestinales Caco-2/15 pré-incubées avec les DAPP (250 µg/mL). L’effet du SOx est déterminé par le dosage du malondialdéhyde (MDA), de la composition des acides gras polyinsaturés et de l’activité des enzymes antioxydantes endogènes (SOD et GPx). L’impact des DAPP sur l’inflammation a été testé par l’analyse de l’expression des marqueurs inflammatoires: cyclooxygénase-2 (COX-2), le facteur de nécrose tumorale alpha (TNF-a et l’interleukine-6 (IL-6) et les facteurs de transcription NF-KB, Nrf-2 et PGC1α par immunobuvardage. Nos données ont montré que les flavonols et les flavan-3-ols constituent les composés polyphénoliques majoritaires des DAPP. L’ajout de Fer2+/Asc a provoqué une augmentation de la peroxidation lipidique comparativement aux cellules contrôles, un appauvrissement des acides gras polyinsaturés n-3 et n-6, et une modulation des enzymes antioxydantes, se traduisant par une augmentation de l’activité de la SOD et une diminution de la GPx. En contrepartie, les DAPP ont exhibé leur potentiel à corriger la plupart des perturbations, y compris l’expression protéique anormalement élevée du COX-2 et la production de la prostaglandine E2 (PGE2), ainsi que l’inflammation telle que réflétée par les facteurs NF-κB, TNF-α et IL-6. Par ailleurs, les mécanismes sous-jacents à ces changements bénéfiques des DAPP ont fait intervenir les facteurs de transcription antioxydants (Nrf-2, PGC1α). Vraisemblablement, cette première étude a permis de démontrer la capacité des DAPP à amoindrir le SOx et à réduire l’inflammation, deux processus étroitement impliqués dans les MII. Dans la deuxième étape de mon doctorat, nous avons voulu comparer les résultats de DAPP à ceux des polyphénols dérivant de la canneberge qui est considérée par la communauté scientifique comme le fruit ayant le plus fort potentiel antioxydant. À cette fin, nous avons caractérisé l’effet des composés polyphénoliques de la canneberge (CPC) sur le SOx, la défense antioxydante et l’inflammation au niveau intestinal tout en définissant leur métabolisme intraluminal. Les différents CPC ont été séparés selon leur poids moléculaire par chromatographie et leurs structures chimiques ont été identifiées par LC-MS. Suite à une pré-incubation des cellules Caco-2/15 avec les extraits CPC (250 µg/mL), le Fe/Asc et la LPS ont été administrés comme inducteurs du SOx et de l’inflammation, respectivement. La caractérisation globale des CPC a révélé que les acides phénoliques composaient majoritairement l’extrait de canneberge de petit poids moléculaire (LC) alors que les flavonoïdes et les procyanidines dimériques/trimériques représentaient l’extrait de poids moléculaire moyen (MC) tout en laissant les procyanidines oligo et polymériques à l’extrait de haut poids moléculaire (HC). Les CPC ont permis de restaurer la plupart des perturbations engendrées dans les Caco-2/15 par le Fe/Asc et le LPS. Les CPC exhibaient le potentiel d’abaisser les niveaux de MDA, de corriger la composition des acides gras polyinsaturés n-3 et n-6, d’augmenter l’activité des enzymes antioxydantes (SOD, GPx et CAT) et d’élever l’expression de Nrf2 et PGC1α. En outre, les CPC pouvaient aussi réduire les niveaux élevés des protéines inflammatoires COX-2, TNF-α et IL-6 ainsi que la production des PGE2 par un mécanisme impliquant le NF-κB. Au niveau mitochondrial, les procyanidines oligomériques ont réussi à corriger les dysfonctions reliées à la production d’énergie (ATP), l’apoptose (Bcl-2, Cyt C et AIF) et le statut des facteurs de transcription mitochondriaux (mtTFA, mtTFB1, mtTFB2). Dans le but de bien comprendre les mécanismes d’action des CPC, nous avons défini par LC-MS les composés polyphénoliques qui ont été transportés ou absorbés par l’entérocyte. Nos analyses soulignent le transport (i) des acides cinnamiques et benzoïques (LC); (ii) la quercétine glycosylée et conjuguée et les procyanidines dimériques de type A (MC); et (iii) l’épicatéchine et les procyanidines oligomériques (HC). Les processus de métabolisation (méthylation, glucuronidation et sulfatation) au niveau de l’entérocyte ont probablement permis le transport de ces CPC surtout sous leur forme conjuguée. Les procyanidines oligomériques ayant un degré de polymérisation supérieur à 2 (HC) ont semblé adhérer aux cellules Caco-2/15. L’épicatéchine suivi par les procyanidines dimériques de type A ont été trouvés majoritaires au niveau des mitochondries. Même si nous ignorons encore l’action biologique de chaque composé polyphénolique, nous pouvons suggérer que leurs effets combinatoires exercent des fonctions antioxydantes, anti-inflammatoires et mitochondriales dans le modèle intestinal Caco-2/15. Dans une troisième étape, nous avons procédé à l’évaluation des aspects préventifs et thérapeutique des DAPP tout en sondant les mécanismes sous-jacents dans une étude préclinique. À cette fin, nous avons exploité le modèle de souris avec colite expérimentale provoquée par le Dextran Sulfate de Sodium (DSS). L’induction de l’inflammation intestinale chez la souris C57BL6 a été effectuée par l’administration orale de DSS à 2.5% pendant 10 jours. Des doses physiologiques et supra-physiologiques de DAPP (200 et 400 mg/kg/j, respectivement) ont été administrées par gavage pendant 10 jours pré- et post-DSS. L’inflammation par le DSS a provoqué une perte de poids, un raccourcissement du côlon, le décollement dystrophique de l’épithélium, l’exulcération et les infiltrations de cellules mono et polynucléaires au niveau du côlon. De plus, le DSS a induit une augmentation de la peroxidation lipidique, une régulation à la baisse des enzymes antioxydantes, une expression protéique à la hausse de la myéloperoxidase (MPO), du COX-2 et de la production des PGE2. Par ailleurs, les DAPP ont permis de corriger ou du moins d’alléger la plupart de ces anomalies en situation préventive ou thérapeutique, en plus d’abaisser l’expression protéique de NF-κB et des cytokines inflammatoires (TNF-a et l’IL-6) tout en stimulant les facteurs de transcription antioxydants (Nrf-2, PGC1α). Conséquemment, les polyphénols des DAPP ont exhibé leur puissant pouvoir antioxydant et anti-inflammatoire au niveau intestinal dans un modèle in vivo. Leurs actions sont associées à la régulation des voies de signalisation cellulaire et des changements dans la composition du microbiote. Ces trois projets de recherche permettent d’envisager l’évaluation des effets préventifs et thérapeutiques des DAPP cliniquement chez les patients avec des désordres inflammatoires de l’intestin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Docosahexaenoic (DHA) and arachidonic acids (AA) are polyunsaturated fatty acids (PUFAs), major components of brain tissue and neural systems, and the precursors of a number of biologically active metabolites with functions in inflammation resolution, neuroprotection and other actions. As PUFAs are highly susceptible to peroxidation, we hypothesised whether cigarette smokers would present altered PUFAs levels in plasma and erythrocyte phospholipids. Adult males from Indian, Sri-Lankan or Bangladeshi genetic backgrounds who reported smoking between 20 and 60 cigarettes per week were recruited. The control group consisted of matched non-smokers. A blood sample was taken, plasma and erythrocyte total lipids were extracted, phospholipids were separated by thin layer chromatography, and the fatty acid content analysed by gas chromatography. In smokers, dihomo-gamma-linolenic acid, the AA precursor, was significantly reduced in plasma and erythrocyte phosphatidylcholine. AA and DHA were significantly reduced in erythrocyte sphingomyelin. Relatively short term smoking has affected the fatty acid composition of plasma and erythrocyte phospholipids with functions in neural tissue composition, cell signalling, cell growth, intracellular trafficking, neuroprotection and inflammation, in a relatively young population. As lipid peroxidation is pivotal in the pathogenesis of atherosclerosis and neurodegenerative diseases such as Alzheimer disease, early effects of smoking may be relevant for the development of such conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding of seed ageing, which leads to viability loss during storage, is vital for ex situ plant conservation and agriculture alike. Yet the potential for regulation at the transcriptional level has not been fully investigated. Here, we studied the relationship between seed viability, gene expression and glutathione redox status during artificial ageing of pea (Pisum sativum) seeds. Transcriptome-wide analysis using microarrays was complemented with qRT-PCR analysis of selected genes and a multilevel analysis of the antioxidant glutathione. Partial degradation of DNA and RNA occurred from the onset of artificial ageing at 60% RH and 50 degrees C, and transcriptome profiling showed that the expression of genes associated with programmed cell death, oxidative stress and protein ubiquitination were altered prior to any sign of viability loss. After 25 days of ageing viability started to decline in conjunction with progressively oxidising cellular conditions, as indicated by a shift of the glutathione redox state towards more positive values (>-190 mV). The unravelling of the molecular basis of seed ageing revealed that transcriptome reprogramming is a key component of the ageing process, which influences the progression of programmed cell death and decline in antioxidant capacity that ultimately lead to seed viability loss.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uma alternativa para pescados subaproveitados e subprodutos da industrialização de pescado é o desenvolvimento de processos para recuperação e/ou alteração das proteínas musculares de pescados. O objetivo deste trabalho foi a obtenção de hidrolisados protéicos de carne mecanicamente separada (CMS) de anchoita (Engraulis anchoita) e a avaliação da sua atividade antioxidante, aplicando-os bem embutido preparado com o surimi de anchoita. Foram produzidos diferentes hidrolisados com as enzimas microbianas Alcalase, Flavourzyme e Protamex, fixando a concentração de substrato e de enzima e os parâmetros pH e temperatura foram variados. Os hidrolisados foram efetivos contra a inibição da peroxidação lipídica (43,8±0,2%) e no poder redutor, onde o hidrolisado com a enzima Flavourzyme em 1 hora de reação mostrou-se mais efetivo. No seqüestro de radicais livres, como o DPPH, o hidrolisado com a enzima Flavourzyme, obtido em tempo de hidrólise de 5 horas, alcançou valores acima de 45,0% em concentração de 5 mg/mL. Na produção de surimi foram testadas lavagens da CMS de anchoita com soluções de bicarbonato de sódio 0,5%, ácido fosfórico 0,05% e cloreto de sódio 0,3%. O maior rendimento (90,5%) e uma coloração mais clara (W= 50,24±1,81) foram encontrados no surimi obtido por lavagens com bicarbonato de sódio e cloreto de sódio (BS), em comparação ao surimi que se utilizou água, ácido fosfórico e cloreto de sódio (AF) ou com soluções de cloreto de sódio, ácido fosfórico e bicarbonato de sódio (AB). Na força de gel o surimi AF (1154,25 ± 4,37 g.mm) obteve maior valor, sendo utilizado para a produção de salsichas. Foram analisadas diferentes concentrações de surimi (70, 75 e 80%) em salsichas, que foram submetidas às análises de cor e textura. Não houve influência da concentração de surimi nas características tecnológicas da salsicha, exceto nos valores de luminosidade. A salsicha com 75% de surimi de anchoita foi caracterizada pela composição proximal, valor energético total (VET) e conteúdo de sódio. A salsicha com surimi e comercial apresentou composição semelhante. O produto com surimi apresentou menor VET (193,7Kcal/100g) e conteúdo de sódio (520 mg/100g) que a salsicha comercial. Nas condições de estudo, no embutido emulsionado, não foi verificada ação antioxidante de hidrolisados, porém houve efeito sobre a CMS de anchoita.