867 resultados para light mechanization
Resumo:
Introduction: The aim of this study was to evaluate the rat alveolar bone response after the implantation of experimental light-cured mineral trioxide aggregate (MTA) or Angelus MTA (Angelus, Londrina, Parana, Brazil) by histological and fluorescence analysis. Methods: Thirty Wistar Albino rats were divided into three groups. In the control group, empty polyethylene tubes were inserted into the rat alveolar sockets immediately after extraction. In the other groups, the tubes were filled with light-cured MTA or Angelus MTA. Five animals from each group were injected with calcein on day 7, alizarin on day 14, and oxytetracycline on day 21. on day 30, these animals were killed, and the right hemimaxillas were removed and histologically processed. Half of the maxillas were processed and stained with hematoxylin and eosin. The remaining maxillas were processed for fluorescence analysis and stained with Stevenel blue and alizarin red. New bone was histomorphometrically evaluated using a Merz grid. Results: The light-cured MTA presented a similar response when compared with Angelus MTA; it was characterized by a mild inflammatory response and complete bone healing. In the light-cured MTA group, the fluorescence areas were more evident at 21 days, showing an increase in bone formation. However, dystrophic mineralization was observed only with Angelus MTA. Conclusions: It was concluded that both materials present a similar inflammatory response and bone healing, but dystrophic mineralization was observed only with Angelus MTA. (J Endod 2011;37:250-254)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this study was to evaluate the subcutaneous response of rat connective tissue to light-cure MTA and Angelus MTA. These materials were placed in polyethylene and dentin tubes and implanted into dorsal connective tissue of Wistar rats for 30 and 60 days. The specimens were prepared to be stained with hematoxylin-eosin, Von Kossa, and without stain for polarized light and evaluated in an optic microscope. The Angelus MTA showed a mild inflammatory response at 30 days and none at 60 days, characterized by organized connective tissue, presence of some chronic inflammatory cells, and induction of mineralized tissue formation. Light-cure MTA presented a moderate chronic inflammatory response at 30 days that decreased at 60 days but was more intense than with Angelus MTA and without dystrophic calcifications. It was possible to conclude that light-cure MTA was similar to MTA at 60 days, but it did not stimulate mineralization.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. Material and Methods: Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED) units were used. There were 4 immersion media: coffee, tea, Coke (R) and artificial saliva. A total of 180 specimens (10 mm x 2 mm) were prepared, immersed in artificial saliva for 24 h at 37 +/- 1 degrees C, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05). For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05). Results: High-power-density LED (Delta E=1.91) promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus - Delta E=2.05; XL 3000 - Delta E=2.28). Coffee (Delta E=8.40; Delta L=-5.21) showed the highest influence on color stability of the studied composite resin. Conclusion: There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study evaluated the influence of light-curing units (LCUs) on Knoop microhardness (KHN) of different composite resins formulations. Four LCUs, one Quartz-Tungsten-Halogen (QTH) for 20 s, one Argon-Ion-Laser (AL) for 10 s, one Plasma-Arc-Curing (PAC) for 9 s, and one Light-Emitting-Diode (LED) for 20 s, and three composite resins, nanofill and easy cure (Filtek (TM) Supreme), microhybrid and medium cure (Herculite XRV), and microfill and difficult cure (Heliomolar) were used. Discs (4 x 2 mm(2)) of each composite resin were divided in 12 Groups and KHN was measured at the top (T) and bottom (B) surfaces. Data were analyzed using two-way ANOVA and Tukey's test (p < 0.05). Top presented significantly higher KHN than bottom surface for all composite resins and LCUs tested. Statistical significant differences were observed among the LCUs. At the bottom surface QTH and LED presented higher KHN than PAC and LA. However, at the top surface PAC and LA presented similar results than QTH for nanofill and microhybrid composite resins. Different LCUs play an important effect on Knoop microhardness and the composite resin formulations were significant factor on the photosensitivity.
Resumo:
The purpose of this study was to evaluate the polymerization effectiveness of a composite resin (Z-250) utilizing microhardness testing. In total, 80 samples with thicknesses of 2 and 4 mm were made, which were photoactivated by a conventional halogen light-curing unit, and light-curing units based on LED. The samples were stored in water distilled for 24 h at 37C. The Vickers microhardness was performed by the MMT-3 microhardness tester. The microhardness means obtained were as follows: G1, 72.88; G2, 69.35; G3, 67.66; G4, 69.71; G5, 70.95; G6, 75.19; G7, 72.96; and G8, 71.62. The data were submitted to an analysis of variance (ANOVA's test), adopting a significance level of 5%. The results showed that, in general, there were no statistical differences between the halogen and LED light-curing units used with the same parameters.
Resumo:
The purpose of this study was to evaluate the influence of different light sources for in-office bleaching on surface microhardness of human enamel. One hundred and five blocks of third molars were distributed among seven groups. The facial enamel surface of each block was polished and baseline Knoop microhardness of enamel was assessed with a load of 25 g for 5 s. Subsequently, the enamel was treated with 35% hydrogen peroxide bleaching agent and photo-activated with halogen light (group A) during 38 s, LED (group B) during 360 s, and high intensity diode laser (group C) during 4 s. The groups D (38 s), E (360 s), and F (4 s) were treated with the bleaching agent without photo-activated. The control (group G) was only kept in saliva without any treatment. Microhardness was reassessed after 1 day of the bleaching treatment, and after 7 and 21 days storage in artificial saliva. The mean percentage and standard deviation of microhardness in Knoop Hardness Number were: A 97.8 +/- 13.1 KHN; B 95.5 +/- 12.7 KHN; C 84.2 +/- 13.6 KHN; D 128.6 +/- 20.5 KHN; E 133.9 +/- 14.2 KHN; F 123.9 +/- 14.2 KHN; G 129.8 +/- 18.8 KHN. Statistical analysis (p < 0.05; Tukey test) showed that microhardness percentage values were significantly lower in the groups irradiated with light when compared with the non-irradiated groups. Furthermore, the non-irradiated groups showed that saliva was able to enhance the microhardness during the measurement times. The enamel microhardness was decreased when light sources were used during the bleaching process and the artificial saliva was able to increase microhardness when no light was used.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to determine the effect of two light-curing units (QTH and LED) on microleakage of Class II composite resin restorations with dentin cavosurface margins. Twenty extracted mandibular first premolars, free of caries and fractures were prepared two vertical slot cavities in the occluso-mesial and -destal surfaces (2 mm buccal-lingually, 2 mm proximal-axially and cervical limit in enamel) and divided into 4 equal groups (n = 8): GI and GII: packable posterior composite light-activated with LED and QTH, respectively; GIII and GIV: micro-hybrid composite resin light-activated with LED and QTH, respectively. The composite resins were applied following the manufacturer's instructions. After 24 h of water storage specimens were subjected to thermocycling for a total of 500 cycles at 5 and 55A degrees C and the teeth were then sealed with impermeable material. Teeth were immersed in 0.5% Basic fuchsin during 24 h at room temperature, and zero to three levels of penetration score were attributed. The Mann-Whitney and Kruskal-Wallis tests showed significant statistically similar (P > 0.05) from GI to GII and GIII to GIV, which the GII (2.750) had the highest mean scores and the GIII and GIV (0.875) had lowest mean scores. The use of different light-curing units has no influence on marginal integrity of Class II composite resin restorations and the proprieties of composite resins are important to reduce the microleakage.