791 resultados para iterative algorithm
Resumo:
Application of optimization algorithm to PDE modeling groundwater remediation can greatly reduce remediation cost. However, groundwater remediation analysis requires a computational expensive simulation, therefore, effective parallel optimization could potentially greatly reduce computational expense. The optimization algorithm used in this research is Parallel Stochastic radial basis function. This is designed for global optimization of computationally expensive functions with multiple local optima and it does not require derivatives. In each iteration of the algorithm, an RBF is updated based on all the evaluated points in order to approximate expensive function. Then the new RBF surface is used to generate the next set of points, which will be distributed to multiple processors for evaluation. The criteria of selection of next function evaluation points are estimated function value and distance from all the points known. Algorithms created for serial computing are not necessarily efficient in parallel so Parallel Stochastic RBF is different algorithm from its serial ancestor. The application for two Groundwater Superfund Remediation sites, Umatilla Chemical Depot, and Former Blaine Naval Ammunition Depot. In the study, the formulation adopted treats pumping rates as decision variables in order to remove plume of contaminated groundwater. Groundwater flow and contamination transport is simulated with MODFLOW-MT3DMS. For both problems, computation takes a large amount of CPU time, especially for Blaine problem, which requires nearly fifty minutes for a simulation for a single set of decision variables. Thus, efficient algorithm and powerful computing resource are essential in both cases. The results are discussed in terms of parallel computing metrics i.e. speedup and efficiency. We find that with use of up to 24 parallel processors, the results of the parallel Stochastic RBF algorithm are excellent with speed up efficiencies close to or exceeding 100%.
Resumo:
This paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II.
Resumo:
Audio coding is used to compress digital audio signals, thereby reducing the amount of bits needed to transmit or to store an audio signal. This is useful when network bandwidth or storage capacity is very limited. Audio compression algorithms are based on an encoding and decoding process. In the encoding step, the uncompressed audio signal is transformed into a coded representation, thereby compressing the audio signal. Thereafter, the coded audio signal eventually needs to be restored (e.g. for playing back) through decoding of the coded audio signal. The decoder receives the bitstream and reconverts it into an uncompressed signal. ISO-MPEG is a standard for high-quality, low bit-rate video and audio coding. The audio part of the standard is composed by algorithms for high-quality low-bit-rate audio coding, i.e. algorithms that reduce the original bit-rate, while guaranteeing high quality of the audio signal. The audio coding algorithms consists of MPEG-1 (with three different layers), MPEG-2, MPEG-2 AAC, and MPEG-4. This work presents a study of the MPEG-4 AAC audio coding algorithm. Besides, it presents the implementation of the AAC algorithm on different platforms, and comparisons among implementations. The implementations are in C language, in Assembly of Intel Pentium, in C-language using DSP processor, and in HDL. Since each implementation has its own application niche, each one is valid as a final solution. Moreover, another purpose of this work is the comparison among these implementations, considering estimated costs, execution time, and advantages and disadvantages of each one.
Resumo:
LEÃO, Adriano de Castro; DÓRIA NETO, Adrião Duarte; SOUSA, Maria Bernardete Cordeiro de. New developmental stages for common marmosets (Callithrix jacchus) using mass and age variables obtained by K-means algorithm and self-organizing maps (SOM). Computers in Biology and Medicine, v. 39, p. 853-859, 2009
Resumo:
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work addresses issues related to analysis and development of multivariable predictive controllers based on bilinear multi-models. Linear Generalized Predictive Control (GPC) monovariable and multivariable is shown, and highlighted its properties, key features and applications in industry. Bilinear GPC, the basis for the development of this thesis, is presented by the time-step quasilinearization approach. Some results are presented using this controller in order to show its best performance when compared to linear GPC, since the bilinear models represent better the dynamics of certain processes. Time-step quasilinearization, due to the fact that it is an approximation, causes a prediction error, which limits the performance of this controller when prediction horizon increases. Due to its prediction error, Bilinear GPC with iterative compensation is shown in order to minimize this error, seeking a better performance than the classic Bilinear GPC. Results of iterative compensation algorithm are shown. The use of multi-model is discussed in this thesis, in order to correct the deficiency of controllers based on single model, when they are applied in cases with large operation ranges. Methods of measuring the distance between models, also called metrics, are the main contribution of this thesis. Several application results in simulated distillation columns, which are close enough to actual behaviour of them, are made, and the results have shown satisfactory
Resumo:
This paper presents a method for automatic identification of dust devils tracks in MOC NA and HiRISE images of Mars. The method is based on Mathematical Morphology and is able to successfully process those images despite their difference in spatial resolution or size of the scene. A dataset of 200 images from the surface of Mars representative of the diversity of those track features was considered for developing, testing and evaluating our method, confronting the outputs with reference images made manually. Analysis showed a mean accuracy of about 92%. We also give some examples on how to use the results to get information about dust devils, namelly mean width, main direction of movement and coverage per scene. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Image restoration attempts to enhance images corrupted by noise and blurring effects. Iterative approaches can better control the restoration algorithm in order to find a compromise of restoring high details in smoothed regions without increasing the noise. Techniques based on Projections Onto Convex Sets (POCS) have been extensively used in the context of image restoration by projecting the solution onto hyperspaces until some convergence criteria be reached. It is expected that an enhanced image can be obtained at the final of an unknown number of projections. The number of convex sets and its combinations allow designing several image restoration algorithms based on POCS. Here, we address two convex sets: Row-Action Projections (RAP) and Limited Amplitude (LA). Although RAP and LA have already been used in image restoration domain, the former has a relaxation parameter (A) that strongly depends on the characteristics of the image that will be restored, i.e., wrong values of A can lead to poorly restoration results. In this paper, we proposed a hybrid Particle Swarm Optimization (PS0)-POCS image restoration algorithm, in which the A value is obtained by PSO to be further used to restore images by POCS approach. Results showed that the proposed PSO-based restoration algorithm outperformed the widely used Wiener and Richardson-Lucy image restoration algorithms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)