994 resultados para investment models
Resumo:
We present a stylized intertemporal forward-looking model able that accommodates key regional economic features, an area where the literature is not well developed. The main difference, from the standard applications, is the role of saving and its implication for the balance of payments. Though maintaining dynamic forward-looking behaviour for agents, the rate of private saving is exogenously determined and so no neoclassical financial adjustment is needed. Also, we focus on the similarities and the differences between myopic and forward-looking models, highlighting the divergences among the main adjustment equations and the resulting simulation outcomes.
Resumo:
This paper models the decision to quit smoking like an investment decision where the quitter incurs a sunk withdrawal cost today and forgoes their consumer surplus from cigarettes (invests) and hopes to reap an uncertain reward of better health and therefore higher utility in the future (return). We show that a risk-averse mature smoker who expects to benefit from quitting may still rationally choose to delay quitting until they are more confident that quitting is the right decision for them. Such a decision by the smoker is due to the value associated with keeping their option of whether or not to quit open as they learn more about the damage that smoking will have on their future utility. Policies which reduce a smoker’s uncertainty about the damage that smoking with have on their future utility is likely to make them quit earlier.
Resumo:
The standard approach to the economics of climate change, which has its best known implementation in Nordhaus's DICE and RICE models (well described in Nordhaus's 2008 book, A Question of Balance) is not well equipped to deal with the possibility of catastrophe, since we are unable to evaluate a risk averse representative agent's expected utility when there is any signi cant probability of zero consumption. Whilst other authors attempt to develop new tools with which to address these problems, the simple solution proposed in this paper is to ask a question that the currently available tools of climate change economics are capable of answering. Rather than having agents optimally choosing a path (that differs from the recommendations of climate scientists) within models which cannot capture the essential features of the problem, I argue that economic models should be used to determine the savings and investment paths which implement climate targets that have been suggested in the physical science literature.
Resumo:
Faced with the problem of pricing complex contingent claims, an investor seeks to make his valuations robust to model uncertainty. We construct a notion of a model- uncertainty-induced utility function and show that model uncertainty increases the investor's eff ective risk aversion. Using the model-uncertainty-induced utility function, we extend the \No Good Deals" methodology of Cochrane and Sa a-Requejo [2000] to compute lower and upper good deal bounds in the presence of model uncertainty. We illustrate the methodology using some numerical examples.
Resumo:
AIMS/HYPOTHESIS: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.
Resumo:
This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.
Resumo:
Much attention in recent years has turned to the potential of behavioural insights to improve the performance of government policy. One behavioural concept of interest is the effect of a cash transfer label on how the transfer is spent. The Winter Fuel Payment (WFP) is a labelled cash transfer to offset the costs of keeping older households warm in the winter. Previous research has shown that households spend a higher proportion of the WFP on energy expenditures due to its label (Beatty et al., 2011). If households interpret the WFP as money for their energy bills, it may reduce their willingness to undertake investments which help achieving the same goal, such as the adoption of renewable energy technologies. In this paper we show that the WFP has distortionary effects on the renewable technology market. Using the sharp eligibility criteria of the WFP in a Regression Discontinuity Design, this analysis finds a reduction in the propensity to install renewable energy technologies of around 2.7 percentage points due to the WFP. This is a considerable number. It implies that 62% of households (whose oldest member turns 60) would have invested in renewable energy but refrain to do so after receiving the WFP. This analysis suggests that the labelling effect spreads to products related to the labelled good. In this case, households use too much energy from sources which generate pollution and too little from relatively cleaner technologies.
Resumo:
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.
Resumo:
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.
Resumo:
The paper considers the use of artificial regression in calculating different types of score test when the log
Resumo:
This paper develops a two-sector growth model in which institutional investors play a significant role. A necessary and sufficient condition is established under which these investors own the entire capital stock in the long run. The dependence of the long-run growth rate on the behaviour of such investors, and the effects of a productivity increase are analysed.
Resumo:
Time varying parameter (TVP) models have enjoyed an increasing popularity in empirical macroeconomics. However, TVP models are parameter-rich and risk over-fitting unless the dimension of the model is small. Motivated by this worry, this paper proposes several Time Varying dimension (TVD) models where the dimension of the model can change over time, allowing for the model to automatically choose a more parsimonious TVP representation, or to switch between different parsimonious representations. Our TVD models all fall in the category of dynamic mixture models. We discuss the properties of these models and present methods for Bayesian inference. An application involving US inflation forecasting illustrates and compares the different TVD models. We find our TVD approaches exhibit better forecasting performance than several standard benchmarks and shrink towards parsimonious specifications.
Resumo:
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time-varying parameter models. Our approach allows for the coefficient on each predictor to be: i) time varying, ii) constant over time or iii) shrunk to zero. The econometric methodology decides automatically which category each coefficient belongs in. Our empirical results indicate the benefits of such an approach.
Resumo:
Time-inconsistency is an essential feature of many policy problems (Kydland and Prescott, 1977). This paper presents and compares three methods for computing Markov-perfect optimal policies in stochastic nonlinear business cycle models. The methods considered include value function iteration, generalized Euler-equations, and parameterized shadow prices. In the context of a business cycle model in which a scal authority chooses government spending and income taxation optimally, while lacking the ability to commit, we show that the solutions obtained using value function iteration and generalized Euler equations are somewhat more accurate than that obtained using parameterized shadow prices. Among these three methods, we show that value function iteration can be applied easily, even to environments that include a risk-sensitive scal authority and/or inequality constraints on government spending. We show that the risk-sensitive scal authority lowers government spending and income-taxation, reducing the disincentive households face to accumulate wealth.
Resumo:
We introduce and investigate a series of models for an infection of a diplodiploid host species by the bacterial endosymbiont Wolbachia. The continuous models are characterized by partial vertical transmission, cytoplasmic incompatibility and fitness costs associated with the infection. A particular aspect of interest is competitions between mutually incompatible strains. We further introduce an age-structured model that takes into account different fertility and mortality rates at different stages of the life cycle of the individuals. With only a few parameters, the ordinary differential equation models exhibit already interesting dynamics and can be used to predict criteria under which a strain of bacteria is able to invade a population. Interestingly, but not surprisingly, the age-structured model shows significant differences concerning the existence and stability of equilibrium solutions compared to the unstructured model.