979 resultados para inhibitory activity
Resumo:
An estimated 2%-3% of the world's population is chronically infected with hepatitis C virus (HCV) and this is a major cause of liver disease worldwide. Following acute infection, outcome is variable with acute HCV successfully resolved in some individuals (20%-30%), but in the majority of cases the virus is able to persist. Co-infection with human immunodeficiency virus has been associated with a negative impact on the course of HCV infection. The host's immune response is an important correlate of HCV infection outcome and disease progression. Natural killer (NK) cells provide a major component of the antiviral immune response by recognising and killing virally infected cells. NK cells modulate their activity through a combination of inhibitory and activatory receptors such as the killer immunoglobulin-like receptors (KIRs) that bind to human leukocyte antigen (HLA) Class I molecules. In this workshop component, we addressed the influence of KIR genotypes and their HLA ligands on resolving HCV infection and we discuss the implications of the results of the study of Lopez-Vazquez et al. on KIR and HCV disease progression.
Resumo:
The detailed mechanistic aspects for the final starch digestion process leading to effective alpha-glucogenesis by the 2 mucosal alpha-glucosidases, human sucrase-isomaltase complex (SI) and human maltase-glucoamylase (MGAM), are poorly understood. This is due to the structural complexity and vast variety of starches and their intermediate digestion products, the poorly understood enzyme-substrate interactions occurring during the digestive process, and the limited knowledge of the structure-function properties of SI and MGAM. Here we analyzed the basic catalytic properties of the N-terminal subunit of MGAM (ntMGAM) on the hydrolysis of glucan substrates and compared it with those of human native MGAM isolated by immunochemical methods. In relation to native MGAM, ntMGAM displayed slower activity against maltose to maltopentose (G5) series glucose oligomers, as well as maltodextrins and alpha-limit dextrins, and failed to show the strong substrate inhibitory "brake" effect caused by maltotriose, maltotetrose, and G5 on the native enzyme. In addition, the inhibitory constant for acarbose was 2 orders of magnitude higher for ntMGAM than for native MGAM, suggesting lower affinity and/or fewer binding configurations of the active site in the recombinant enzyme. The results strongly suggested that the C-terminal subunit of MGAM has a greater catalytic efficiency due to a higher affinity for glucan substrates and larger number of binding configurations to its active site. Our results show for the first time, to our knowledge, that the C-terminal subunit of MGAM is responsible for the MGAM peptide's "glucoamylase" activity and is the location of the substrate inhibitory brake. In contrast, the membrane-bound ntMGAM subunit contains the poorly inhibitable "maltase" activity of the internally duplicated enzyme.
Resumo:
The epithelial calcium channel TRPV6 is upregulated in breast carcinoma compared with normal mammary gland tissue. The selective estrogen receptor modulator tamoxifen is widely used in breast cancer therapy. Previously, we showed that tamoxifen inhibits calcium uptake in TRPV6-transfected Xenopus oocytes. In this study, we examined the effect of tamoxifen on TRPV6 function and intracellular calcium homeostasis in MCF-7 breast cancer cells transiently transfected with EYFP-C1-TRPV6. TRPV6 activity was measured with fluorescence microscopy using Fura-2. The basal calcium level was higher in transfected cells compared with nontransfected cells in calcium-containing solution but not in nominally calcium-free buffer. Basal influxes of calcium and barium were also increased. In transfected cells, 10 mumol/L tamoxifen reduced the basal intracellular calcium concentration to the basal calcium level of nontransfected cells. Tamoxifen decreased the transport rates of calcium and barium in transfected cells by 50%. This inhibitory effect was not blocked by the estrogen receptor antagonist, ICI 182,720. Similarly, a tamoxifen-induced inhibitory effect was also observed in MDA-MB-231 estrogen receptor-negative cells. The effect of tamoxifen was completely blocked by activation of protein kinase C. Inhibiting protein kinase C with calphostin C decreased TRPV6 activity but did not alter the effect of tamoxifen. These findings illustrate how tamoxifen might be effective in estrogen receptor-negative breast carcinomas and suggest that the therapeutic effect of tamoxifen and protein kinase C inhibitors used in breast cancer therapy might involve TRPV6-mediated calcium entry. This study highlights a possible role of TRPV6 as therapeutic target in breast cancer therapy.
Resumo:
Enamel matrix derivative (EMD), an extract of fetal porcine enamel, and TGF-β can both suppress adipogenic differentiation. However, there have been no studies that functionally link the role of EMD and TGF-β in vitro. Herein, we examined whether TGF-β signaling contributes to EMD-induced suppression of adipogenic differentiation. Adipogenesis was studied with 3T3-L1 preadipocytes in the presence of SB431542, an inhibitor of TGF-βRI kinase activity. SB431542 reversed the inhibitory effect of EMD on adipogenic differentiation, based on Oil Red O staining and mRNA expression of lipid regulated genes. SB431542 also reduced EMD-stimulated expression of connective tissue growth factor (CTGF), an autocrine inhibitor of adipogenic differentiation. Moreover, short interfering (si)RNAs for CTGF partially reversed the EMD-induced suppression of lipid regulated genes. We conclude that the TGF-βRI - CTGF axis is involved in the anti-adipogenic effects of EMD in vitro.
Resumo:
The activity of moxifloxacin was compared with ofloxacin and doxycycline against bacteria associated with periodontitis within a biofilm (single strain and mixed population) in vitro. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of moxifloxacin, ofloxacin and doxycyline were determined against single strains and mixed populations in a planktonic state. Single-species biofilms of two Porphyromonas gingivalis and two Aggregatibacter actinomycetemcomitans strains and a multi-species biofilm consisting of 12 species were formed for 3 days. The minimal biofilm eradication concentrations (MBECs) were determined after exposing the biofilms to the antibacterials (0.002 - 512 µg ml-1) for 18 h, addition of nutrient broth for 3 days and subsequent subcultivation. Photographs were taken by using confocal laser scanning microscopy and scanning electron microscopy. The MICs and MBCs did not differ between ofloxacin and moxifloxacin against A. actinomycetemcomitans, moxifloxacin was more active than the other tested antibacterials against anaerobes and the mixed population. The single-species biofilms were eradicated by moderate concentrations of the antibacterials, the lowest MBECs were always found for moxifloxacin (2-8 µg ml-1). MBECs against the multi-species biofilms were 128 µg ml-1, >512 µg ml-1 and >512 µg ml-1 for moxifloxacin, ofloxacin and doxycycline, respectively. In summary, moxifloxacin in a topical formulation may have potential as an adjunct to mechanical removal of the biofilms.
Resumo:
The thalamus integrates and transmits sensory information to the neocortex. The activity of thalamocortical relay (TC) cells is modulated by specific inhibitory circuits. Although this inhibition plays a crucial role in regulating thalamic activity, little is known about long-term changes in synaptic strength at these inhibitory synapses. Therefore, we studied long-term plasticity of inhibitory inputs to TC cells in the posterior medial nucleus of the thalamus by combining patch-clamp recordings with two-photon fluorescence microscopy in rat brain slices. We found that specific activity patterns in the postsynaptic TC cell induced inhibitory long-term potentiation (iLTP). This iLTP was non-Hebbian because it did not depend on the timing between presynaptic and postsynaptic activity, but it could be induced by postsynaptic burst activity alone. iLTP required postsynaptic dendritic Ca2+ influx evoked by low-threshold Ca2+ spikes. In contrast, tonic postsynaptic spiking from a depolarized membrane potential (−50 mV), which suppressed these low-threshold Ca2+ spikes, induced no plasticity. The postsynaptic dendritic Ca2+ increase triggered the synthesis of nitric oxide that retrogradely activated presynaptic guanylyl cyclase, resulting in the presynaptic expression of iLTP. The dependence of iLTP on the membrane potential and therefore on the postsynaptic discharge mode suggests that this form of iLTP might occur during sleep, when TC cells discharge in bursts. Therefore, iLTP might be involved in sleep state-dependent modulation of thalamic information processing and thalamic oscillations.
Resumo:
The Bcr-Abl fusion oncogene which resulted from a balanced reciprocal translocation between chromosome 9 and 22, t(9;22)(q11, q34), encodes a 210 KD elevated tyrosine specific protein kinase that is found in more than 95 percent of chronic myelogenous leukemia patients (CML). Increase of level of phosphorylation of tyrosine is observed on cell cycle regulatory proteins in cells overexpressing the Bcr-Abl oncogene, which activates multiple signaling pathways. In addition, distinct signals are required for transforming susceptible fibroblast and hematopoietic cells, and the minimal signals essential for transforming hematopoietic cells are yet to be defined. In the present study, we first established a tetracycline repressible p210$\rm\sp{bcr-abl}$ expression system in a murine myeloid cell line 32D c13, which depends on IL3 to grow in the presence of tetracycline and proliferate independent of IL3 in the absence of tetracycline. Interestingly, one of these sublines does not form tumors in athymic nude mice suggesting that these cells may not be completely transformed. These cells also exhibit a dose-dependent growth and expression of p210$\rm\sp{bcr-abl}$ at varying concentrations of tetracycline in the culture. However, p210$\rm\sp{bcr-abl}$ rescues IL3 deprivation induced apoptosis in a non-dose dependent fashion. DNA genotoxic damage induced by gamma-irradiation activates c-Abl tyrosine kinase, the cellular homologue of p210$\rm\sp{bcr-abl},$ and leads to activation of p38 MAP kinase in the cells. However, in the presence of p210$\rm\sp{bcr-abl}$ the irradiation failed to activate the p38 MAP kinase as examined by an antibody against phosphorylated p38 MAP kinase. Similarly, an altered tyrosine phosphorylation of the JAK1-STAT1 pathways was identified in cells constitutively overexpressing p210$\rm\sp{bcr-abl}.$ This may provided a molecular mechanism for altered therapeutic response of CML patients to IFN-$\alpha.$^ Bcr-Abl oncoprotein has multiple functional domains which have been identified by the work of others. The Bcr tetramerization domain, which may function to stabilize the association of the Bcr-Abl with actin filaments in p210$\rm\sp{bcr-abl}$ susceptible cells, are essential for transforming both fibroblast and hematopoietic cells. We designed a transcription unit encoding first 160 amino acids polypeptide of Bcr protein to test if this polypeptide can inhibit the transforming activity of the p210$\rm\sp{bcr-abl}$ oncoprotein in the 32D c13 cells. When this vector was transfected transiently along with the p210$\rm\sp{bcr-abl}$ expression vector, it can block the transforming activity of p210$\rm\sp{bcr-abl}.$ On the other hand, the retinoblastoma tumor suppressor protein (Rb), a naturally occurring negative regulator of the c-Abl kinase, the cellular homologue of Bcr-Abl oncoprotein, binds to and inhibits the c-Abl kinase in a cell cycle dependent manner. A polypeptide obtained from the carboxyl terminal end of the retinoblastoma tumor suppressor protein, in which the nuclear localization signal was mutated, was used to inhibit the kinase activity of the p210$\rm\sp{bcr-abl}$ in the cytoplasm. This polypeptide, called Rb MC-box, and its wild type form, Rb C-box, when overexpressed in the 32D cells are mainly localized in the cytoplasm. Cotransfection of a plasmid transcription unit coding for this polypeptide and the gene for the p210$\rm\sp{bcr-abl}$ resulted in reduced plating efficiency of p210$\rm\sp{bcr-abl}$ transfected IL3 independent 32D cells. Together, these results may lead to a molecular approach to therapy of CML and an in vitro assay system to identify new targets to which an inhibitory polypeptide transcription unit may be directed. ^
Resumo:
The capacity to inhibit inappropriate responses is crucial for goal-directed behavior. Inhibiting such responses seems to come more easily to some of us than others, however. From where do these individual differences originate? Here, we measured 263 participants' neural baseline activation using resting electroencephalogram. Then, we used this stable neural marker to predict a reliable electrophysiological index of response inhibition capacity in the cued Continuous Performance Test, the NoGo-Anteriorization (NGA). Using a source-localization technique, we found that resting delta, theta, and alpha1 activity in the left middle frontal gyrus and resting alpha1 activity in the right inferior frontal gyrus were negatively correlated with the NGA. As a larger NGA is thought to represent better response inhibition capacity, our findings demonstrate that lower levels of resting slow-wave oscillations in the lateral prefrontal cortex, bilaterally, are associated with a better response inhibition capacity.
Resumo:
New therapeutic strategies are needed to combat the emergence of infections due to multidrug-resistant Neisseria gonorrhoeae (Ng). In this study, fosfomycin (FOS) was tested against 89 Ng using the Etest method and showing MIC50/90s of only 8/16 μg/ml (range ≤ 1-32 μg/ml). FOS in combination with ceftriaxone (CRO) or azithromycin (AZT) was then evaluated using the checkerboard method for eight strains, including F89 (CRO-resistant) and AZT-HLR (high-level AZT-resistant). All combinations including FOS gave indifferent effects (fractional inhibitory concentration [FIC] index values between 1.2-2.3 for FOS plus CRO and between 1.8-3.2 for FOS plus AZT). Time-kill experiments for FOS, CRO, AZT and their combinations (at concentrations of 0.5×, 1×, 2× and 4× MIC) were performed against ATCC 49226, one Ng of NG-MAST ST1407, F89 and AZT-HLR. For all strains, at 24 hours results indicated that: i) FOS was bactericidal at 2× MIC concentrations but after >24 hours there was re-growth of bacteria; ii) CRO was bactericidal at 0.5× MIC; iii) AZT was bactericidal at 4× MIC; iv) CRO plus AZT was less bactericidal than CRO alone; v) FOS plus AZT was bactericidal at 2× MIC; vi) CRO plus AZT and FOS plus CRO were both bactericidal at 0.5× MIC, but the latter had more rapid effects. FOS is appealing for the management of Ng infections because of its single and oral formulation. However, our results suggest its use in combination with CRO. This strategy could, after appropriate clinical trials, be implemented for the treatment of infections due to isolates possessing resistance to CRO and/or AZT.
Resumo:
Introduction: Alcohol-dependency is a common disease with many negative consequences in the daily life. A typical symptom of alcoholic-patients is the persistent and uncontrollable desire to consume alcohol. Inspite of different treatments, alcohol-dependency has a relapse rate of about 85%. This high rate is facilitated by a dysfunction of cognitive control-processes. In order to understand this disease sustaining factor, the present study investigated the neurophysiological correlates of inhibition of alcoholic-patients in a neutral as well as an alcohol-related context. Methods: A total of 18 participants, (9 alcohol-dependent-patients (age range: 27-62 years), 9 healthy controls (age range: 29-60 years)) have been measured with functional magnetic resonance imaging while they participated in an alcohol-specific Go/NoGo-Task. Neurophysiological correlates of inhibition in an alcohol-related as well as a neutral context were compared in both groups. Results: When comparing correct stop-trials in alcohol-related to neutral context, only alcohol-dependent patients showed significant hyperactivation in frontal regions (superior and medial gyrus frontalis, anterior gyrus cinguli, gyrus paracentralis and the gyrus praecentralis). No significant differences were found in any of the behavioral analyses. Discussion: These preliminary results thus indicate that successful inhibition in a drug-related context demands additional resources in patients. Especially the hyperactivation of the anterior gyrus cinguli might be important because of its involvement in decision-processes. In the absent of deficits in behavioral data, this suggests that alcohol-dependent patients need more neuronal activity to achieve the same performance-level like healthy controls.
Resumo:
Mechanical injury of the CNS frequently results from accidents but also occurs in the course of neurosurgical interventions. A great variety of anatomical and physiological changes have been described to evolve after a brain trauma yet only little is known about processes that occur during a trauma. In the present study, I obtained whole-cell patch clamp recordings from pyramidal cells in hippocampal slice cultures while mechanically lesioning the CA3 area. Electrophysiological analysis revealed that traumatic injury massively increased excitatory and inhibitory synaptic activity in the entire CA3 region. Cutting the CA3 region induced highly rhythmic excitatory postsynaptic currents (EPSCs) that reached frequencies of around 70 Hz. Blocking voltage-dependent sodium channels with tetrodotoxin prevented the increase in synaptic activity and injury-induced neurotransmitter release in CA3 remote from the lesion site. With fast synaptic transmission blocked only neurons in the immediate vicinity of a lesion depolarized and fired action potentials upon mechanical damage. I hence suggest that mechanical injury damages the membrane and induces action potential firing in only a small population of neurons. This activity is then propagated throughout the undamaged CA3 network inducing highly rhythmic discharges. Thus mechanical brain injury initiates immediate functional changes that exceed the lesion site.
Resumo:
The antimicrobial activity of taurolidine was compared with minocycline against microbial species associated with periodontitis (four single strains and a 12-species mixture). Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs), killing as well as activities on established and forming single-species biofilms and a 12-species biofilm were determined. The MICs of taurolidine against single species were always 0.31 mg/ml, the MBCs were 0.64 mg/ml. The used mixed microbiota was less sensitive to taurolidine, MIC and the MBC was 2.5 mg/ml. The strains and the mixture were completely killed by 2.5 mg/ml taurolidine, whereas 256 μg/ml minocycline reduced the bacterial counts of the mixture by 5 log10 colony forming units (cfu). Coating the surface with 10 mg/ml taurolidine or 256 μg/ml minocycline prevented completely biofilm formation of Porphyromonas gingivalis ATCC 33277 but not of Aggregatibacter actinomycetemcomitans Y4 and the mixture. On 4.5 d old biofilms, taurolidine acted concentration dependent with a reduction by 5 log10 cfu (P. gingivalis ATCC 33277) and 7 log10 cfu (A. actinomycetemcomitans Y4) when applying 10 mg/ml. Minocycline decreased the cfu counts by 1-2 log10 cfu independent of the used concentration. The reduction of the cfu counts in the 4.5 d old multi-species biofilms was about 3 log10 cfu after application of any minocycline concentration and after using 10 mg/ml taurolidine. Taurolidine is active against species associated with periodontitis, even within biofilms. Nevertheless a complete elimination of complex biofilms by taurolidine seems to be impossible and underlines the importance of a mechanical removal of biofilms prior to application of taurolidine.
Resumo:
Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells.
Resumo:
A large body of research demonstrated that participants preferably look back to the encoding location when retrieving visual information from memory. However, the role of this 'looking back to nothing' is still debated. The goal of the present study was to extend this line of research by examining whether an important area in the cortical representation of the oculomotor system, the frontal eye field (FEF), is involved in memory retrieval. To interfere with the activity of the FEF, we used inhibitory continuous theta burst stimulation (cTBS). Before stimulation was applied, participants encoded a complex scene and performed a short-term (immediately after encoding) or long-term (after 24 h) recall task, just after cTBS over the right FEF or sham stimulation. cTBS did not affect overall performance, but stimulation and statement type (object vs. location) interacted. cTBS over the right FEF tended to impair object recall sensitivity, whereas there was no effect on location recall sensitivity. These findings suggest that the FEF is involved in retrieving object information from scene memory, supporting the hypothesis that the oculomotor system contributes to memory recall.
Resumo:
FTY720 sequesters lymphocytes in secondary lymphoid organs through effects on sphingosine-1-phosphate (S1P) receptors. However, at higher doses than are required for immunosuppression, FTY720 also functions as an anticancer agent in multiple animal models. Our published work indicates that the anticancer effects of FTY720 do not depend on actions at S1P receptors but instead stem from FTY720s ability to restrict access to extracellular nutrients by down-regulating nutrient transporter proteins. This result was significant because S1P receptor activation is responsible for FTY720s dose-limiting toxicity, bradycardia, that prevents its use in cancer patients. Here, we describe diastereomeric and enantiomeric 3- and 4-C-aryl 2-hydroxymethyl pyrrolidines that are more active than the previously known analogues. Of importance is that these compounds fail to activate S1P1 or S1P3 receptors in vivo but retain inhibitory effects on nutrient transporter proteins and anticancer activity in solid tumor xenograft models. Our studies reaffirm that the anticancer activity of FTY720 does not depend upon S1P receptor activation and uphold the promise of using S1P receptor-inactive azacyclic FTY720 analogues in human cancer patients.