925 resultados para inhibition of HA formation
Resumo:
A cDNA coding for a digestive cathepsin L, denominated Sl-CathL, was isolated from a cDNA library of Sphenophorus levis larvae, representing the most abundant EST (10.49%) responsible for proteolysis in the midgut. The open reading frame of 972 bp encodes a preproenzyme similar to midgut cathepsin L-like enzymes in other coleopterans. Recombinant Sl-CathL was expressed in Pichia pastoris, with molecular mass of about 42 kDa. The recombinant protein was catalytically activated at low pH and the mature enzyme of 39 kDa displayed thermal instability and maximal activity at 37 degrees C and pH 6.0. Immunocytochemical analysis revealed Sl-CathL production in the midgut epithelium and secretion from vesicles containing the enzyme into the gut lumen, confirming an important role for this enzyme in the digestion of the insect larvae. The expression profile identified by RT-PCR through the biological cycle indicates that Sl-CathL is mainly produced in larval stages, with peak expression in 30-day-old larvae. At this stage, the enzyme is 1250-fold more expressed than in the pupal fase, in which the lowest expression level is detected. This enzyme is also produced in the adult stage, albeit in lesser abundance, assuming the presence of a different array of enzymes in the digestive system of adults. Tissue-specific analysis revealed that Sl-CathL mRNA synthesis occurs fundamentally in the larval midgut, thereby confirming its function as a digestive enzyme, as detected in immunolocalization assays. The catalytic efficiency of the purified recombinant enzyme was calculated using different substrates (Z-Leu-Arg-AMC, Z-Arg-Arg-AMC and Z-Phe-Arg-AMC) and rSl-CathL exhibited hydrolysis preference for Z-Leu-Arg-AMC (k(cat)/K-m = 37.53 mM S-1), which is similar to other insect cathepsin L-like enzymes. rSl-CathL activity inhibition assays were performed using four recombinant sugarcane cystatins. rSl-CathL was strongly inhibited by recombinant cystatin CaneCPI-4 (K-i = 0.196 nM), indicating that this protease is a potential target for pest control. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background Several studies had demonstrated the involvement of the dorsolateral portion of periaqueductal grey matter (dlPAG) in defensive responses. This region contains a significant number of neurons containing the enzyme nitric oxide synthase (NOS) and previous studies showed that non-selective NOS inhibition or glutamate NMDA-receptor antagonism in the dlPAG caused anxiolytic-like effects in the elevated plus maze. Methods In the present study we verified if the NMDA/NO pathway in the dlPAG would also involve in the behavioral suppression observed in rats submitted to the Vogel conflict test. In addition, the involvement of this pathway was investigated by using a selective nNOS inhibitor, Nω-propyl-L-arginine (N-Propyl, 0.08 nmol/200 nL), a NO scavenger, carboxy-PTIO (c-PTIO, 2 nmol/200 nL) and a specific NMDA receptor antagonist, LY235959 (4 nmol/200 nL). Results Intra-dlPAG microinjection of these drugs increased the number of punished licks without changing the number of unpunished licks or nociceptive threshold, as measure by the tail flick test. Conclusion The results indicate that activation of NMDA receptors and increased production of NO in the dlPAG are involved in the anxiety behavior displayed by rats in the VCT.
Resumo:
Background The discovery and development of anti-malarial compounds of plant origin and semisynthetic derivatives thereof, such as quinine (QN) and chloroquine (CQ), has highlighted the importance of these compounds in the treatment of malaria. Ursolic acid analogues bearing an acetyl group at C-3 have demonstrated significant anti-malarial activity. With this in mind, two new series of betulinic acid (BA) and ursolic acid (UA) derivatives with ester groups at C-3 were synthesized in an attempt to improve anti-malarial activity, reduce cytotoxicity, and search for new targets. In vitro activity against CQ-sensitive Plasmodium falciparum 3D7 and an evaluation of cytotoxicity in a mammalian cell line (HEK293T) are reported. Furthermore, two possible mechanisms of action of anti-malarial compounds have been evaluated: effects on mitochondrial membrane potential (ΔΨm) and inhibition of β-haematin formation. Results Among the 18 derivatives synthesized, those having shorter side chains were most effective against CQ-sensitive P. falciparum 3D7, and were non-cytotoxic. These derivatives were three to five times more active than BA and UA. A DiOC6(3) ΔΨm assay showed that mitochondria are not involved in their mechanism of action. Inhibition of β-haematin formation by the active derivatives was weaker than with CQ. Compounds of the BA series were generally more active against P. falciparum 3D7 than those of the UA series. Conclusions Three new anti-malarial prototypes were obtained from natural sources through an easy and relatively inexpensive synthesis. They represent an alternative for new lead compounds for anti-malarial chemotherapy.
Resumo:
Abstract Background In an effort to identify new alternatives for long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) supplementation, the effect of three sources of omega 3 fatty acids (algae, fish and Echium oils) on lipid profile and inflammation biomarkers was evaluated in LDL receptor knockout mice. Methods The animals received a high fat diet and were supplemented by gavage with an emulsion containing water (CON), docosahexaenoic acid (DHA, 42.89%) from algae oil (ALG), eicosapentaenoic acid (EPA, 19.97%) plus DHA (11.51%) from fish oil (FIS), and alpha-linolenic acid (ALA, 26.75%) plus stearidonic acid (SDA, 11.13%) from Echium oil (ECH) for 4 weeks. Results Animals supplemented with Echium oil presented lower cholesterol total and triacylglycerol concentrations than control group (CON) and lower VLDL than all of the other groups, constituting the best lipoprotein profile observed in our study. Moreover, the Echium oil attenuated the hepatic steatosis caused by the high fat diet. However, in contrast to the marine oils, Echium oil did not affect the levels of transcription factors involved in lipid metabolism, such as Peroxisome Proliferator Activated Receptor α (PPAR α) and Liver X Receptor α (LXR α), suggesting that it exerts its beneficial effects by a mechanism other than those observed to EPA and DHA. Echium oil also reduced N-6/N-3 FA ratio in hepatic tissue, which can have been responsible for the attenuation of steatosis hepatic observed in ECH group. None of the supplemented oils reduced the inflammation biomarkers. Conclusion Our results suggest that Echium oil represents an alternative as natural ingredient to be applied in functional foods to reduce cardiovascular disease risk factors.
Resumo:
LDL oxidation and oxidative stress are closely related to atherosclerosis. Therefore, natural antioxidants have been studied as promising candidates. In the present study, the LDL oxidation inhibition activity of bioactive compounds from Halimeda incrassata seaweed. associated to antioxidant capacity, was evaluated in vitro. Experimental work was conducted with lyophilized aqueous extract and phenolic-rich fractions of the seaweed and their effect on LDL oxidation was evaluated using heparin-precipitated LDL (hep-LDL) with exposure to Cu2+ ions and AAPH as the free radical generator. H. incrassata had a protective effect for hep-LDL in both systems and the presence of phenolic compounds contributed to the activity where phenolic-rich fractions showed significant capacity for inhibition of oxidation mediated by Cu2+ ions. The observed effect could be related to the antioxidant potential of polar fractions evidenced by reducing activity and DPPH radical scavenging. The results obtained in vitro further support the antioxidant and LDL oxidation inhibition properties of H. incrassata and further knowledge toward future phytotherapeutic application of the seaweed.
Resumo:
BACKGROUND: Ischemia and reperfusion (IR) injury remains a major cause of morbidity and mortality and multiple molecular and cellular pathways have been implicated in this injury. We determined whether acute inhibition of excessive mitochondrial fission at the onset of reperfusion improves mitochondrial dysfunction and cardiac contractility postmyocardial infarction in rats. METHODS AND RESULTS: We used a selective inhibitor of the fission machinery, P110, which we have recently designed. P110 treatment inhibited the interaction of fission proteins Fis1/Drp1, decreased mitochondrial fission, and improved bioenergetics in three different rat models of IR, including primary cardiomyocytes, ex vivo heart model, and an in vivo myocardial infarction model. Drp1 transiently bound to the mitochondria following IR injury and P110 treatment blocked this Drp1 mitochondrial association. Compared with control treatment, P110 (1 μmol/L) decreased infarct size by 28 ± 2% and increased adenosine triphosphate levels by 70+1% after IR relative to control IR in the ex vivo model. Intraperitoneal injection of P110 (0.5 mg/kg) at the onset of reperfusion in an in vivo model resulted in improved mitochondrial oxygen consumption by 68% when measured 3 weeks after ischemic injury, improved cardiac fractional shortening by 35%, reduced mitochondrial H2O2 uncoupling state by 70%, and improved overall mitochondrial functions. CONCLUSIONS: Together, we show that excessive mitochondrial fission at reperfusion contributes to long-term cardiac dysfunction in rats and that acute inhibition of excessive mitochondrial fission at the onset of reperfusion is sufficient to result in long-term benefits as evidenced by inhibiting cardiac dysfunction 3 weeks after acute myocardial infarction.
Resumo:
AIMS: The relationship between the activity of eosinophils and platelets has been observed in recent decades by many scientists. These observations include increased numbers of eosinophils associated with platelet disorders, including changes in the coagulation cascade and platelet aggregation. Based on these observations, the interaction between eosinophils and platelets in platelet aggregation was analyze. MAIN METHODS: Human platelets were incubated with eosinophil cytosolic fraction, promyelocytic human HL-60 clone 15 cell lineage, and eosinophil cationic protein (ECP). Platelet rich plasma (PRP) aggregation was induced by adenosine diphosphate, platelet activating factor, arachidonic acid, and collagen, and washed platelets (WP) were activated by thrombin. KEY FINDINGS: Aggregation induced by all agonists was dose dependently inhibited by eosinophil cytosolic fraction. This inhibition was only partially reversed by previous incubation of the eosinophils with l-Nitro-Arginine-Methyl-Ester (l-NAME). Previous incubation with indomethacin did not prevent the cytosolic fraction induced inhibition. The separation of eosinophil cytosolic fraction by gel filtration on Sephadex G-75 showed that the inhibitory activity was concentrated in the lower molecular weight fraction. HL-60 clone 15 cells differentiated into eosinophils for 5 and 7 day were able to inhibit platelet aggregation. The ECP protein inhibited the platelet aggregation on PRP and WP. This inhibition was more evident in WP, and the citotoxicity MTT assay proved the viability of tested platelets, showing that the observed inhibition by the ECP protein does not occur simply by cell death. SIGNIFICANCE: Our results indicate that eosinophils play a fundamental role in platelet aggregation inhibition
Resumo:
This research seeks to provide an explanation for variations of “politics” of preference formation in international trade negotiations. Building on the ‘policy determines politics’ argument, I hypothesize the existence of a causal relationship between issue-characteristics and their variations with politics dynamics and their variations. More specifically, this study seeks to integrate into a single analytical framework two dimensions along which variations in the “politics of preference formation” can be organized: configurations of power relationships among the relevant actors in the structures within which they interact as well as the logic and the motivations of the actors involved in the policy making process. To do so, I first construct a four-cell typology of ‘politics of preference formation’ and, then, I proceed by specifying that the type of state-society configurations as well as the type of actors’ motivations in the “politics of preference formation” depend, respectively, on the degree to which a policy issue is perceived as politically salient and on the extent to which the distributional implications of such an issue can be calculated by the relevant stakeholders in the policy making process. The empirical yardstick against which the validity of the theoretical argument proposed is tested is drawn from evidence concerning the European Union’s negotiating strategy in four negotiating areas in the context of the so-called WTO’s Doha Development Round of multilateral trade negotiations: agriculture, competition, environment and technical assistance and capacity building.
Resumo:
The goal of this thesis is to analyze the possibility of using early-type galaxies to place evolutionary and cosmological constraints, by both disentangling what is the main driver of ETGs evolution between mass and environment, and developing a technique to constrain H(z) and the cosmological parameters studying the ETGs age-redshift relation. The (U-V) rest-frame color distribution is studied as a function of mass and environment for two sample of ETGs up to z=1, extracted from the zCOSMOS survey with a new selection criterion. The color distributions and the slopes of the color-mass and color-environment relations are studied, finding a strong dependence on mass and a minor dependence on environment. The spectral analysis performed on the D4000 and Hδ features gives results validating the previous analysis. The main driver of galaxy evolution is found to be the galaxy mass, the environment playing a subdominant but non negligible role. The age distribution of ETGs is also analyzed as a function of mass, providing strong evidences supporting a downsizing scenario. The possibility of setting cosmological constraints studying the age-redshift relation is studied, discussing the relative degeneracies and model dependencies. A new approach is developed, aiming to minimize the impact of systematics on the “cosmic chronometer” method. Analyzing theoretical models, it is demonstrated that the D4000 is a feature correlated almost linearly with age at fixed metallicity, depending only minorly on the models assumed or on the SFH chosen. The analysis of a SDSS sample of ETGs shows that it is possible to use the differential D4000 evolution of the galaxies to set constraints to cosmological parameters in an almost model-independent way. Values of the Hubble constant and of the dark energy EoS parameter are found, which are not only fully compatible, but also with a comparable error budget with the latest results.
Resumo:
The aim of the research project discussed in this thesis was to study the inhibition of aerobic glycolysis, that is the metabolic pathway exploited by cancer cells for the ATP generation. This observation has led to the evaluation of glycolytic inhibitors as potential anticancer agents. Lactate dehydrogenase (LDH) is the only enzyme whose inhibition should allow a blocking of aerobic glycolysis of tumor cells without damaging the normal cells which, in conditions of normal functional activity and sufficient oxygen supply, do not need this enzyme. In preliminar experiments we demonstrated that oxamic acid and tartronic acid, two LDH competitive inhibitors, impaired aerobic glycolysis and replication of cells from human hepatocellular carcinoma. Therefore, we proposed that the depletion of ATP levels in neoplastic cells, could improved the chemotherapeutic index of associated anticancer drugs; in particular, it was studied the association of oxamic acid and multi-targeted kinase inhibitors. A synergistic effect in combination with sorafenib was observed, and we demonstrated that this was related to the capacity of sorafenib to hinder the oxidative phosphorylation, so that cells were more dependent to aerobic glycolysis. These results linked to LDH blockage encouraged us to search for LDH inhibitors more powerful than oxamic acid; thus, in collaboration with the Department of Pharmaceutical Sciences of Bologna University we identified a new molecule, galloflavin, able to inhibit both A and B isoforms of LDH enzyme. The effects of galloflavin were studied on different human cancer cell lines (hepatocellular carcinoma, breast cancer, Burkitt’s lymphoma). Although exhibiting different power on the tested cell lines, galloflavin was constantly found to inhibit lactate and ATP production and to induce cell death, mainly in the form of apoptosis. Finally, as LDH-A is able to bind single stranded DNA, thus stimulating cell transcription, galloflavin effects were also studied on this other LDH function.
Resumo:
Class I phosphatidylinositol 3-kinases (PI3Ks) are heterodimeric lipid kinases consisting of a regulatory subunit and one of four catalytic subunits (p110α, p110β, p110γ or p110δ). p110γ/p110δ PI3Ks are highly enriched in leukocytes. In general, PI3Ks regulate a variety of cellular processes including cell proliferation, survival and metabolism, by generating the second messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). Their activity is tightly regulated by the phosphatase and tensin homolog (PTEN) lipid phosphatase. PI3Ks are widely implicated in human cancers, and in particular are upregulated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to loss of PTEN function. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. At present different compounds which target single or multiple PI3K isoforms have entered clinical trials. In the present research, it has been analyzed the therapeutic potential of the pan-PI3K inhibitor BKM120, an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T-lymphoblasts. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. BKM120 efficacy was confirmed in in vivo studies to a subcutaneous xenotransplant model of human T-ALL. Because it is still unclear which agents among isoform-specific or pan inhibitors can achieve the greater efficacy, further analyses have been conducted to investigate the effects of PI3K inhibition, in order to elucidate the mechanisms responsible for the proliferative impairment of T-ALL. Overall, these results indicated that BKM120 may be an efficient treatment for T-ALLs that have aberrant up-regulation of the PI3K signaling pathway and strongly support clinical application of pan-class I PI3K rather than single-isoform inhibitors in T-ALL treatment.
Resumo:
Verschiedene Krankheiten gehen mit einer fehlerhaften Vaskularisierung einher. Allerdings ist der Erfolg der derzeitig vorhandenen Therapieansätze, die sich z.B. auf VEGF fokussieren, beschränkt. Aus diesem Grund ist es wichtig, neue Strategien zur Regulation der Angiogenese zu entwickeln. Hierbei stehen neue Signaltransduktions-wege im Fokus, die sich als vielversprechend erweisen, um Angiogenese zu fördern oder zu inhibieren. Die Blutgefäßneubildung ist ein hochregulierter Prozess, der mit einer hohen Proteinsyntheserate verknüpft ist. Die Angiogenese wurde bereits mit dem ER-Stress Signaltransduktionsweg, der Unfolded Protein Response (UPR), in Verbindung gebracht (Zeng et al., 2013; Bouvier et al., 2012). Eine im Rahmen der vorliegenden Studie durchgeführte histologische Untersuchung konnte eine Fehlregulierung der Expression von UPR beteiligten Proteinen in vivo unter pathologischen Bedingungen gezeigt werden. Bemerkenswerter Weise war BiP, der Hauptsensor der UPR, in Endothelzellen von Angiosarkomen sehr stark exprimiert. In in vitro Experimenten wurde gezeigt, dass das Herunterregulieren von BiP mittels RNAi Einfluss auf die inflammatorische Antwort und die Bildung angiogener Strukturen in Endothelzellen nimmt. Das Herunterregulieren des Proteins BiP verstärkte die inflammatorische Antwort von HUVEC, was sich in einer gesteigerten Bildung von IL-8 und ICAM-1 äußerte und wurde auf die Aktivierung der UPR durch die verringerte Menge an BiP zurückgeführt. Der Phänotyp BiP-herunterregulierter Zellen entsprach dem untransfizierter Zellen, welcher durch das Cytoskelett und die Expression des endothelspezifischen Markers CD31 charakterisiert wurde. Im Gegensatz dazu änderte sich der Grad der Glykosylierung in transfizierten Zellen. Im Hinblick auf die Blutgefäßbildung, zeigten sich eine gehemmte Migration und eine inhibierte Bildung Gefäß-ähnlicher Strukturen in BiP-herunterregulierten Zellen. In diesen Zellen war die Expression von KDR auffallend stark inhibiert, wohingegen die Flt-1 Expression sich als gleichbleibend herausstellte, was ebenfalls auf die Aktivierung der UPR zurückgeführt werden konnte. Alternativ wäre der reduzierte Level des Proteins BiP im Hinblick auf die Funktion als Helferenzym in der Proteinfaltung eine mögliche Erklärung für die gehemmte Expression von KDR. Die Ergebnisse dieser Studie deuten darauf hin, dass stabile Spiegel von BiP die Regulierung der Angiogenese durch die Kontrolle der UPR in physiologischen Prozessen unterstützen könnte. Eine Fehlregulierung von BiP durch Unterdrückung der UPR, wie z.B. in malignen Tumoren, könnte Tumorzellen und beteiligten Endothelzellen einen Vorteil verschaffen und zu einer gestörten Vaskularisierung führen. Somit stellt das Stresssensorprotein BiP und die UPR einen potentiellen Angriffspunkt für die Regulation der Angiogenese dar.
Resumo:
Organic semiconductor technology has attracted considerable research interest in view of its great promise for large area, lightweight, and flexible electronics applications. Owing to their advantages in processing and unique physical properties, organic semiconductors can bring exciting new opportunities for broad-impact applications requiring large area coverage, mechanical flexibility, low-temperature processing, and low cost. In order to achieve highly flexible device architecture it is crucial to understand on a microscopic scale how mechanical deformation affects the electrical performance of organic thin film devices. Towards this aim, I established in this thesis the experimental technique of Kelvin Probe Force Microscopy (KPFM) as a tool to investigate the morphology and the surface potential of organic semiconducting thin films under mechanical strain. KPFM has been employed to investigate the strain response of two different Organic Thin Film Transistor with active layer made by 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-Pentacene), and Poly(3-hexylthiophene-2,5-diyl) (P3HT). The results show that this technique allows to investigate on a microscopic scale failure of flexible TFT with this kind of materials during bending. I find that the abrupt reduction of TIPS-pentacene device performance at critical bending radii is related to the formation of nano-cracks in the microcrystal morphology, easily identified due to the abrupt variation in surface potential caused by local increase in resistance. Numerical simulation of the bending mechanics of the transistor structure further identifies the mechanical strain exerted on the TIPS-pentacene micro-crystals as the fundamental origin of fracture. Instead for P3HT based transistors no significant reduction in electrical performance is observed during bending. This finding is attributed to the amorphous nature of the polymer giving rise to an elastic response without the occurrence of crack formation.
Resumo:
The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprinbeta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprinbeta. In chicken tenascin-C, meprinbeta processed all three major splicing variants by removal of 10kDa N-terminal and 38kDa C-terminal peptides, leaving a large central part of subunits intact. A similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15kDa) and two C-terminal fragments (40 and 55kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprinbeta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprinbeta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprinbeta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprinbeta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprinbeta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity.