927 resultados para hip fracture
Resumo:
To determine the load at which FRPs debond from concrete beams using global-energy-balance-based fracture mechanics concepts, the single most important parameter is the fracture energy of the concrete-FRP interface, which is easy to define but difficult to determine. Debonding propagates in the narrow zone of concrete, between the FRP and the (tension) steel reinforcement bars in the beam, and the presence of nearby steel bars prevents the fracture process zone, which in concrete is normally extensive, from developing fully. The paper presents a detailed discussion of the mechanism of the FRP debonding, and shows that the initiation of debonding can be regarded as a Mode I (tensile) fracture in concrete, despite being loaded primarily in shear. It is shown that the incorporation of this fracture energy in the debonding model developed by the authors, details of which are presented elsewhere, gives predictions that match the test results reported in the literature. © 2013 Elsevier Ltd.
Resumo:
The fracture behavior of thin films of bitumen in double cantilever beam (DCB) specimens was investigated over a wide range of temperature and loading rate conditions using finite-element analysis. The model includes a phenomenological model for the mechanical behavior of bitumen, implemented into a special-purpose finite-element user material subroutine, combined with a cohesive zone model (CZM) for simulating the fracture process. The finite-element model is validated against experimental results from laboratory tests of DCB specimens by comparing measured and predicted load-line deflection histories and fracture energy release rates. Computer simulation results agreed well with experimental data of DCB joints containing bitumen films in terms of peak stress, fracture toughness, and stress-strain history response. The predicted "normalized toughness," G=2h, was found to increase in a power-law manner with effective temperaturecompensated strain rate in the ductile region as previously observed experimentally. In the brittle regime, G=2h is virtually constant. The model successfully captured the ductile and brittle failure behavior of bitumen films in opening mode (tension) for stable crack growth conditions. © 2013 American Society of Civil Engineers.
Resumo:
The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system of equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on the penalty method. In order to model discrete fractures, the so-called diffraction method is used.Examples are presented and the results are compared to some closed-form solutions and FEM approximations in order to demonstrate the validity of the developed model and its capabilities. The model is able to take the anisotropy and inhomogeneity of the material into account. The applicability of the model is examined by simulating hydraulic fracture initiation and propagation process from a borehole by injection of fluid. The maximum tensile strength criterion and Mohr-Coulomb shear criterion are used for modelling tensile and shear fracture, respectively. The model successfully simulates the leak-off of fluid from the fracture into the surrounding material. The results indicate the importance of pore fluid pressure in the initiation and propagation pattern of fracture in saturated soils. © 2013 Elsevier Ltd.
Resumo:
The mechanics of failure for elastic-brittle lattice materials is reviewed. Closed-form expressions are summarized for fracture toughness as a function of relative density for a wide range of periodic lattices. A variety of theoretical and numerical approaches has been developed in the literature and in the main the predictions coincide for any given topology. However, there are discrepancies and the underlying reasons for these are highlighted. The role of imperfections at the cell wall level can be accounted for by Weibull analysis. Nevertheless, defects can also arise on the meso-scale in the form of misplaced joints, wavy cell walls and randomly distributed missing cell walls. These degrade the macroscopic fracture toughness of the lattice. © 2010 Springer Science+Business Media B.V.
Resumo:
This study investigates the effect of thermal cycles on the fracture properties of the cement-based bi-materials. Sixty eight cubes were exposed to a varied number of 24-hour thermal cycles ranging from 0 to 90 and subsequently were tested in a wedge splitting configuration. The mechanical and fracture properties of normal strength and high strength concretes are substantially improved after 30 thermal cycles, but less so after 90 thermal cycles both in isolation and when bonded to an ultra high-performance fibre-reinforced cement-based composite. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
High strength steels can suffer from a loss of ductility when exposed to hydrogen, and this may lead to sudden failure. The hydrogen is either accommodated in the lattice or is trapped at defects, such as dislocations, grain boundaries and carbides. The challenge is to identify the effect of hydrogen located at different sites upon the drop in tensile strength of a high strength steel. For this purpose, literature data on the failure stress of notched and un-notched steel bars are re-analysed; the bars were tested over a wide range of strain rates and hydrogen concentrations. The local stress state at failure has been determined by the finite element (FE) method, and the concentration of both lattice and trapped hydrogen is predicted using Oriani's theory along with the stress-driven diffusion equation. The experimental data are rationalised in terms of a postulated failure locus of peak maximum principal stress versus lattice hydrogen concentration. This failure locus is treated as a unique material property for the given steel and heat treatment condition. We conclude that the presence of lattice hydrogen increases the susceptibility to hydrogen embrittlement whereas trapped hydrogen has only a negligible effect. It is also found that the observed failure strength of hydrogen charged un-notched bars is less than the peak local stress within the notched geometries. Weakest link statistics are used to account for this stressed volume effect. © 2013 Elsevier Ltd.
Resumo:
The fracture and time-dependent properties of cornea are very important for the development of corneal scaffolds and prostheses. However, there has been no systematic study of cornea fracture; time-dependent behavior of cornea has never been investigated in a fracture context. In this work, fracture toughness of cornea was characterized by trouser tear tests, and time-dependent properties of cornea were examined by stress-relaxation and uniaxial tensile tests. Control experiments were performed on a photoelastic rubber sheet. Corneal fracture resistance was found to be strain-rate dependent, with values ranging from 3.39±0.57 to 5.40±0.48kJm(-2) over strain rates from 3 to 300mmmin(-1). Results from stress-relaxation tests confirmed that cornea is a nonlinear viscoelastic material. The cornea behaved closer to a viscous fluid at small strain but became relatively more elastic at larger strain. Although cornea properties are greatly dependent on time, the stress-strain responses of cornea were found to be insensitive to the strain rate when subjected to tensile loading.
Resumo:
© 2014 Taylor & Francis. The durability of asphalt pavements is strongly impaired by cracks, caused primarily by traffic loads and environmental effects. In this work, fracture behaviour of idealised asphalt mixes is investigated. Experiments on idealised asphalt mixes under pure-tension mode (mode I cracking) were performed and fracture parameters were evaluated. In these three-point bend fracture tests, the test variables were temperature and load rate. The test data were stored in an asphalt materials database and special-purpose tools were implemented to analyse and handle the laboratory data automatically. Fracture mechanism maps were constructed, showing the conditions associated with ductile, brittle and ductile-brittle transition regimes of behaviour. The mechanism maps show the failure response of the material in terms of the stress intensity factor, strain energy release rate and J-integral as a function of the temperature-compensated crack mouth opening strain rate. Fracture behaviour of asphalt mix specimens was simulated by cohesive zone model in conjunction with a novel material constitutive model for asphalt mixes. The finite element model agrees well with the experimental results and provides insights into fracture response of the notched asphalt mix beam specimens.
Resumo:
The bulge test is successfully extended to the determination of the fracture properties of silicon nitride and oxide thin films. This is achieved by using long diaphragms made of silicon nitride single layers and oxide/nitride bilayers, and applying comprehensive mechanical model that describes the mechanical response of the diaphragms under uniform differential pressure. The model is valid for thin films with arbitrary z-dependent plane-strain modulus and prestress, where z denotes the coordinate perpendicular to the diaphragm. It takes into account the bending rigidity and stretching stiffness of the layered materials and the compliance of the supporting edges. This enables the accurate computation of the load-deflection response and stress distribution throughout the composite diaphragm as a function of the load, in particular at the critical pressure leading to the fracture of the diaphragms. The method is applied to diaphragms made of single layers of 300-nm-thick silicon nitride deposited by low-pressure chemical vapor deposition and composite diaphragms of silicon nitride grown on top of thermal silicon oxide films produced by wet thermal oxidation at 950 degrees C and 1050 degrees C with target thicknesses of 500, 750, and 1000 mn. All films characterized have an amorphous structure. Plane-strain moduli E-ps and prestress levels sigma(0) of 304.8 +/- 12.2 GPa and 1132.3 +/- 34.4 MPa, respectively, are extracted for Si3N4, whereas E-ps = 49.1 +/- 7.4 GPa and sigma(0) = -258.6 +/- 23.1 MPa are obtained for SiO2 films. The fracture data are analyzed using the standardized form of the Weibull distribution. The Si3N4 films present relatively high values of maximum stress at fracture and Weibull moduli, i.e., sigma(max) = 7.89 +/- 0.23 GPa and m = 50.0 +/- 3.6, respectively, when compared to the thermal oxides (sigma(max) = 0.89 +/- 0.07 GPa and m = 12.1 +/- 0.5 for 507-nm-thick 950 degrees C layers). A marginal decrease of sigma(max) with thickness is observed for SiO2, with no significant differences between the films grown at 950 degrees C and 1050 degrees C. Weibull moduli of oxide thin films are found to lie between 4.5 +/- 1.2 and 19.8 +/- 4.2, depending on the oxidation temperature and film thickness.
Resumo:
This paper reports the mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates. Using bulge testing combined with a refined load-deflection model of long rectangular membranes, which takes into account the bending stiffness and prestress of the membrane material, the Young's modulus, prestress, and fracture strength for the 3C-SiC thin films with thicknesses of 0.40 and 1.42 mu m were extracted. The stress distribution in the membranes under a load was calculated analytically. The prestresses for the two films were 322 +/- 47 and 201 +/- 34 MPa, respectively. The thinner 3C-SiC film with a strong (111) orientation has a plane-gstrain moduli of 415 +/- 61 GPa, whereas the thicker film with a mixture of both (111) and (110) orientations exhibited a plane-strain moduli of 329 +/- 49 GPa. The corresponding fracture strengths for the two kinds of SiC films were 6.49 +/- 0.88 and 3.16 +/- 0.38 GPa, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over edge, surface, and volume of the specimens and were fitted with Weibull distribution function. For the 0.40-mu m-thick membranes, the surface integration has a better agreement between the data and the model, implying that the surface flaws are the dominant fracture origin. For the 1.42-mu m-thick membranes, the surface integration presented only a slightly better fitting quality than the other two, and therefore, it is difficult to rule out unambiguously the effects of the volume and edge flaws.