914 resultados para heart left ventricle enddiastolic pressure
Resumo:
Background: the associations between autonomic function and biventricular function in patients with the indeterminate form of Chagas disease remains to be elucidated.Methods: In 42 asymptornatic patients and 19 healthy volunteers, the autonomic function was assessed by time domain indices of heart rate variability (HRV), analyzed for 24 h; the right ventricular function was assessed by fraction area change, right ventricle shortening, and systolic excursion of the tricuspid valve; and the left ventricular function was assessed by ejection fraction and transmittal flow velocities. Data were expressed as mean SD or medians (including the lower quartile and upper quartile). Groups were compared by Student's t or Mann-Whitney U test. Autonomic and ventricular function were correlated by Pearson's or Spearman's correlation coefficient. The level of significance was 5%.Results: Right and left ventricular systolic function indexes were comparable between groups. Transmittal flow velocities were decreased in the Chagas disease group (p < 0.05). The patients presented impaired HRV as indicated by the values of SDNN-day (80 (64-99) ms vs. 98 (78-127) ms; p = 0.045), SDNNI-24 It (54 (43-71) vs. 65 (54-105) ms; p = 0.027), SDNNI-day (49 (42-64) vs. 67 (48-76) ms; p = 0.045), pNN50-day (2.2 (0.7-5)% vs. 10 (3-11)%; p = 0.033); and pNN50-24 It (3 (1-7)% vs. 12 (8-19)%; p = 0.013). There were no correlations between the left ventricular diastolic indices and autonomic dysfunctional indices (p > 0.05).Conclusion: Patients with the indeterminate form of Chagas disease have both dysautonomia, and left ventricular diastolic dysfunction. However, the right ventricular function is preserved. Importantly, ventricular diastolic dysfunction and dysautonomia. are independent phenomena. (c) 2005 Elsevier B.V.. All rights reserved.
Resumo:
OBJETIVO: Analisar os efeitos da exposição à fumaça de cigarro (EFC) na remodelação ventricular após o infarto agudo do miocárdio (IAM). MÉTODOS: Ratos foram infartados e distribuídos em dois grupos: C (controle, n = 31) e F (EFC: 40 cigarros/dia, n = 22). Após seis meses, foi realizado ecocardiograma, estudo funcional com coração isolado e morfometria. Para comparação, foi utilizado o teste t (com média ± desvio padrão) ou teste de Mann-Whitney (com mediana e percentis 25 e 75). RESULTADOS: Os animais EFC apresentaram tendência a maiores áreas ventriculares diastólicas (C = 1,5 ± 0,4 mm², F = 1,9 ± 0,4 mm²; p = 0,08) e sistólicas (C = 1,05 ± 0,3 mm², F = 1,32 ± 0,4 mm²; p = 0,08) do VE. A função sistólica do VE, avaliada pela fração de variação de área, tendeu a ser menor nos animais EFC (C = 31,9 ± 9,3 %, F = 25,5 ± 7,6 %; p = 0,08). Os valores da - dp/dt dos animais EFC foram estatisticamente inferiores (C = 1474 ± 397 mmHg, F = 916 ± 261 mmHg; p = 0,02) aos animais-controle. Os animais EFC apresentaram maior peso do VD, ajustado ao peso corporal (C = 0,8 ± 0,3 mg/g, F = 1,3 ± 0,4 mg/g; p = 0,01), maior teor de água nos pulmões (C = 4,8 (4,3-4,8)%, F = 5,4 (5,1-5,5); p = 0,03) e maior área seccional do miócito do VE (C = 239,8 ± 5,8 µm², F = 253,9 ± 7,9 µm²; p = 0,01). CONCLUSÃO: A exposição à fumaça de cigarro intensifica a remodelação ventricular após IAM.
Resumo:
Heart failure is a frequent complication of myocardial infarction. Several factors, such as recurrent myocardial ischemia, infarct size, ventricular remodeling, stunned myocardium, mechanical complications, and hibernating myocardium influence the appearance of left ventricular systolic dysfunction after myocardial infarction. Importantly, its presence increases the risk of death by at least 3- to 4-fold. The knowledge of the mechanisms and clinical features are essential for the diagnosis and treatment of left ventricular dysfunction and heart failure after myocardial infarction. Therefore, this review will focus on the clinical implications and treatment of heart failure after myocardial infarction.
Resumo:
Several indexes of myocardial contractility have been proposed to assess ventricular function in the isovolumetrically beating isolated heart. However, the conclusions reached on the basis of these indexes may be influenced by ventricular geometry rather than contractility itself. The objective of the present study was to assess the performance of widely used contractility indexes in the isovolumetrically beating isolated heart in two experimental models of hypertrophy, the spontaneously hypertensive rat (SHR) and infrarenal aortocava fistula. Compared to normotensive controls (N = 8), SHRs with concentric hypertrophy (N = 10) presented increased maximum rate of ventricular pressure rise (3875 ± 526 vs 2555 ± 359 mmHg/s, P < 0.05) and peak of isovolumetric pressure (187 ± 11 vs 152 ± 11 mmHg, P < 0.05), and decreased developed stress (123 ± 20 vs 152 ± 26 g/cm², P < 0.05) and slope of stress-strain relationship (4.9 ± 0.42 vs 6.6 ± 0.77 g/cm²/%). Compared with controls (N = 11), rats with volume overload-induced eccentric hypertrophy (N = 16) presented increased developed stress (157 ± 38 vs 124 ± 22 g/cm², P < 0.05) and slope of stress-strain relationship (9 ± 2 vs 7 ± 1 g/cm²/%, P < 0.05), and decreased maximum rate of ventricular pressure rise(2746 ± 382 vs 3319 ± 352 mmHg, P < 0.05) and peak of isovolumetric pressure (115 ± 14 vs 165 ± 13 mmHg/s, P < 0.05). The results suggested that indexes of myocardial contractility used in experimental studies may present opposite results in the same heart and may be influenced by ventricular geometry. We concluded that several indexes should be taken into account for proper evaluation of contractile state, in the isovolumetrically beating isolated heart.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background and Purpose - the purpose of this research was to evaluate whether an association exists between the presence of atherosclerotic plaque in the thoracic aorta and left ventricular hypertrophy (LVH) in patients with a cerebrovascular event.Methods - We included 116 consecutive patients ( 79 men; mean age, 62 +/- 12.4 years) with previous history of stroke or transient ischemic attack in a cross-sectional study. Transthoracic echocardiogram was performed to diagnose LVH and transesophageal echocardiogram for the detection of atheromas of the thoracic aorta. Continuous variables were analyzed by Student t or Mann-Whitney tests and categorized variables by Goodman test. From the significant association of LVH and age with atheromatous disease of the aorta, an adjustment to the multivariate logistic model was made using high blood pressure history or age as covariates. All of the statistical tests were carried out at a level of 5% significance.Results - Almost half of the patients (43.1%) presented atherosclerotic lesions in the aorta. LVH was present in 90.0% of patients with plaque and in only 30.3% of patients without plaque. Using high blood pressure as a covariate, the risk of patients with LVH presenting atherosclerotic plaque in the aorta was 18.23-fold greater than the risk for patients without LVH (95% CI, 5.68 to 58.54; P < 0.0001). Adding age into the model, the risk increased to 26.36 ( 95% CI, 7.14 to 97.30; P < 0.0001).Conclusions - LVH detected by conventional echocardiogram is associated with high risk of atherosclerotic plaque in the aorta and would be used as a criterion for indication of transesophageal echocardiography in patients with previous stroke or transient ischemic attack LVH.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective To evaluate the effects of butorphanol on cardiopulmonary parameters in dogs anesthetized with desflurane and breathing spontaneously.Study design Prospective, randomized experimental trial.Animals Twenty dogs weighing 12 +/- 3 kg.Methods Animals were distributed into two groups: a control group (CG) and butorphanol group (BG). Propofol was used for induction and anesthesia was maintained with desflurane (10%). Forty minutes after induction, the dogs in the CG received sodium chloride 0.9% (0.05 mL kg(-1) IM), and dogs in the BG received butorphanol (0.4 mg kg(-1) IM). The first measurements of body temperature (BT), heart rate (HR), arterial pressures (AP), cardiac output (CO), cardiac index (CI), central venous pressure (CVP), stroke volume index (SVI), pulmonary arterial occlusion pressure (PAOP), mean pulmonary arterial pressure (mPAP), left ventricular stroke work (LVSW), systemic (SVR) and pulmonary (PVR) vascular resistances, respiratory rate (fR), and arterial oxygen (PaO(2)) and carbon dioxide (PaCO(2)) partial pressures were taken immediately before the administration of butorphanol or sodium chloride solution (T0) and then at 15-minute intervals (T15-T75).Results In the BG, HR, AP, mPAP and SVR decreased significantly from T15 to T75 compared to baseline. fR was lower at T30 than at T0 in the BG. AP and fR were significantly lower than in the CG from T15 to T75. PVR was lower in the BG than in the CG at T30, while PaCO(2) was higher compared with T0 from T30 to T75 in the BG and significantly higher than in the CG at T30 to T75.Conclusions and clinical relevance At the studied dose, butorphanol caused hypotension and decreased ventilation during desflurane anesthesia in dogs. The hypotension (from 86 +/- 10 to 64 +/- 10 mmHg) is clinically relevant, despite the maintenance of cardiac index.
Resumo:
The excitatory amino acid L-glutamate injected into the nucleus of the solitary tract (NTS) in unanesthetized rats similar to peripheral chemoreceptor activation increases mean arterial pressure (MAP) and reduces heart rate. In this study, we investigated the effects of acute (I day) and chronic (15 days) electrolytic lesions of the preoptic-periventricular tissue surrounding the anteroventral third ventricle (AV3V region) on the pressor and bradycardic responses induced by injections of L-glutamate into the NTS or peripheral chemoreceptor activation in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the NTS were used. Differently from the pressor responses (28 +/- 3 mm Hg) produced by injections into the NTS of sham-lesioned rats, L-glutamate (5 nmol/ 100 nl) injected into the NTS reduced MAP (-26 +/- 8 mm Hg) or produced no effect (2 7 turn Hg) in acute and chronic AV3V-lesioned rats, respectively. The bradycardia to L-glutamate into the NTS and the cardiovascular responses to chemoreflex activation with intravenous potassium cyanide or to baroreflex activation with intravenous phenylephrine or sodium nitroprusside were not modified by AV3V lesions. The results show that the integrity of the AV3V region is essential for the pressor responses to L-glutamate into the NTS but not for the pressor responses to chemoreflex activation, suggesting dissociation between the central mechanisms involved in these responses. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the present study, we investigated the effects of inhibition of the caudal ventrolateral medulla (CVLM) with the GABA(A) agonist muscimol combined with the blockade of glutamatergic mechanism in the nucleus of the solitary tract (NTS) with kynurenic acid (kyn) on mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances. In male Holtzman rats anesthetized intravenously with urethane/chloralose, bilateral injections of muscimol (120 pmol) into the CVLM or bilateral injections of kyn (2.7 nmol) into the NTS alone increased MAP to 186 +/- 11 and to 142 +/- 6 mmHg, respectively, vs. control: 105 +/- 4 mmHg; HR to 407 +/- 15 and to 412 +/- 18 beats per minute (bpm), respectively, vs. control: 352 +/- 12 bpm; and renal, mesenteric and hindquarter vascular resistances. However, in rats with the CVLM bilaterally blocked by muscimol, additional injections of kyn into the NTS reduced MAP to 88 +/- 5 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Moreover, in rats with the glutamatergic mechanisms of the NTS blocked by bilateral injections of kyn, additional injections of muscimol into the CVLM also reduced MAP to 92 +/- 2 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Simultaneous blockade of NTS and CVLM did not modify the increase in HR but also abolished the increase in renal vascular resistance produced by each treatment alone. The results suggest that important pressor mechanisms arise from the NTS and CVLM to control vascular resistance and arterial pressure under the conditions of the present study.
Resumo:
1 Nitric oxide (NO) and alpha(2)-adrenoceptor and imidazoline agonists such as moxonidine may act centrally to inhibit sympathetic activity and decrease arterial pressure.2 In the present study, we investigated the effects of pretreatment with L-NAME ( NO synthesis inhibitor), injected into the 4th ventricle (4th V) or intravenously (i.v.), on the hypotension, bradycardia and vasodilatation induced by moxonidine injected into the 4th V in normotensive rats.3 Male Wistar rats with a stainless steel cannula implanted into the 4th V and anaesthetized with urethane were used. Blood flows were recorded by use of miniature pulsed Doppler flow probes implanted around the renal, superior mesenteric and low abdominal aorta.4 Moxonidine (20 nmol), injected into the 4th V, reduced the mean arterial pressure (-42+/-3 mmHg), heart rate (-22+/-7 bpm) and renal (-62+/-15%), mesenteric (-41+/-8%) and hindquarter (-50+/-8%) vascular resistances.5 Pretreatment with L-NAME (10 nmol into the 4th V) almost abolished central moxonidine-induced hypotension (-10+/-3 mmHg) and renal (-10+/-4%), mesenteric (-11+/-4%) and hindquarter (-13+/-6%) vascular resistance reduction, but did not affect the bradycardia (-18+/-8 bpm).6 the results indicate that central NO mechanisms are involved in the vasodilatation and hypotension, but not in the bradycardia, induced by central moxonidine in normotensive rats. British Journal of Pharmacology (2004).
Resumo:
The anteroventral third ventricle (AV3V) region is a critical area of the forebrain, acting on fluid and electrolyte balance and maintaining cardiovascular homeostasis. The purpose of this study was to determine the effects of lesions to the anteroventral third ventricle region on cardiovascular responses to intravenous hypertonic saline (HS) infusion, Male Wistar rats were anesthetized with urethane. The femoral artery and jugular vein were cannulated to record mean arterial pressure (MAP) and infuse hypertonic saline (3M NaCl, 0.18 mL/100 g bw, over 1 min), respectively. Renal blood flow (RBF) was recorded by ultrasonic transit-time flow probes. Renal vascular conductance (RVC) was calculated as renal blood flow to mean arterial pressure ratio and expressed as percentage of baseline. After hypertonic saline infusion in sham animals, renal blood flow and renal vascular conductance increased to 137+10% and 125+7% (10 min), and 141 +/- 10% and 133 +/- 10% (60 min), respectively. Increases in mean arterial pressure (20-min peak: 12 +/- 3 mm Hg) were also observed. An acute lesion in the AV3V region (DC, 2 mA 25s) 30 min before infusion abrogated the effects of hypertonic saline. Mean arterial pressure was unchanged and renal blood flow and renal vascular conductance were 107 +/- 7% and 103 +/- 6% (10 min), and 107 +/- 4 and 106 +/- 4% (60 min), respectively. Marked tachycardia was observed immediately after lesion. Responses of chronic sham or lesioned rats were similar to those of acute animals. However, in chronic lesioned rats, hypertonic saline induced sustained hypertension. These results demonstrate that integrity of the AV3V region is essential for the renal vasodilation that follows acute changes in extracellular fluid compartment composition. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the present study, we investigated the effects of pretreatment with N-G-nitro-L-arginine methyl ester (L-NAME) (nitric oxide synthase inhibitor) injected intravenously (IV) on the hypotension, bradycardia, and vasodilation produced by moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist) injected into the fourth brain ventricle (4th V) in rats submitted to acute hypertension that results from baroreflex blockade by bilateral injections of kynurenic acid (kyn, glutamatergic receptor antagonist) into the nucleus of the solitary tract (NTS) or in normotensive rats. Male Wistar rats (n = 5 to 7/group) anesthetized with IV urethane (1.0 g kg(-1) of body weight) and a-chloralose (60mg kg(-1) of body weight) were used. Bilateral injections of kyn (2.7 nmol 100 nL(-1)) into the NTS increased baseline mean arterial pressure (148 +/- 11 mm Hg, vs. control: 102 +/- 4mm Hg) and baseline heart rate (417 +/- 11 bpm, vs. control: 379 +/- 6 bpm). Moxonidine (20 nmol mu L-1) into the 4th V reduced mean arterial pressure and heart rate to similar levels in rats treated with kyn into the NTS (68 +/- 9 mm Hg and 359 +/- 7 bpm) or in control normotensive rats (66 +/- 7 mm Hg and 362 +/- 8 bpm, respectively). The pretreatment with L-NAME (2 5 mu mol kg-1, IV) attenuated the hypotension produced by moxonidine into the 4th V in rats treated with kyn (104 +/- 6 mm Hg) or in normotensive rats (95 +/- 8 mm Hg), without changing bradycardia. Moxonidine into the 4th V also reduced renal, mesenteric, and hindquarter vascular resistances in rats treated or not with kyn into the NTS and the pretreatment with L-NAME IV reduced these effects of moxonidine. Therefore, these data indicate that nitric oxide mechanisms are involved in hypotension and mesenteric, renal, and hindquarter vasodilation induced by central moxonidine in normotensive and in acute hypertensive rats.
Resumo:
Injections of the excitatory amino acid L-glutamate (L-glu) into the rostral ventrolateral medulla (RVLM) directly activate the sympathetic nervous system and increase mean arterial pressure (MAP). A previous study showed that lesions of the anteroventral third ventricle region in the forebrain reduced the pressor response to L-glu into the RVLM. In the present study we investigated the effects produced by injections of atropine (cholinergic antagonist) into the lateral ventricle (LV) on the pressor responses produced by L-ghl into the RVLM. Male Holtzman rats (280-320 g, n=5 to 12/group) with stainless steel cannulas implanted into the RVLM, LV or 4th ventricle (4th V) were used. MAP and heart rate (HR) were recorded in unanesthetized rats. After saline into the LV, injections of L-glu (5 nmol/100 nl) into the RVLM increased MAP (51 +/- 4 mm Hg) without changes in HR. Atropine (4 nmol/1 PI) injected into the LV reduced the pressor responses to L-glu into the RVLM (36 +/- 5 mm Hg), However, atropine at the same dose into the 4th V or directly into the RVLM did not modify the pressor responses to L-glu into the RVLM (45 +/- 2 and 49 +/- 4 mm Hg, respectively, vs. control: 50 +/- 4mmHg). Central cholinergic blockade did not affect baro and chemoreflex nor the basal MAP and HR. The results suggest that cholinergic mechanisms probably from forebrain facilitate or modulate the pressor responses to L-glu into the RVLM. The mechanism is activated by acetylcholine in the forebrain, however, the neurotransmitter released in the RVLM to facilitate the effects of glutamate is not acetylcholine. (C) 2007 Elsevier B.V. All rights reserved.