797 resultados para health state classification system
Resumo:
We analyse the relation between local two-atom and total multi-atom entanglements in the Dicke system composed of a large number of atoms. We use concurrence as a measure of entanglement between two atoms in the multi-atom system, and the spin squeezing parameter as a measure of entanglement in the whole n-atom system. In addition, the influence of the squeezing phase and bandwidth on entanglement in the steady-state Dicke system is discussed. It is shown that the introduction of a squeezed field leads to a significant enhancement of entanglement between two atoms, and the entanglement increases with increasing degree of squeezing and bandwidth of the incident squeezed field. In the presence of a coherent field the entanglement exhibits a strong dependence on the relative phase between the squeezed and coherent fields, that can jump quite rapidly from unentangled to strongly entangled values when the phase changes from zero to pi. We find that the jump of the degree of entanglement is due to a flip of the spin squeezing from one quadrature component of the atomic spin to the other component when the phase changes from zero to pi. We also analyse the dependence of the entanglement on the number of atoms and find that, despite the reduction in the degree of entanglement between two atoms, a large entanglement is present in the whole n-atom system and the degree of entanglement increases as the number of atoms increases.
Resumo:
In the presence of nonionic block-copolymer surfactant, nanocrystalline zirconia particles with MSU mesostrucmre were synthesized by a novel solid-state reaction route. The zirconia particles possess a nanocrystalline pore wall, which renders higher thermal stability compared to an amorphous framework. To further enhance its stability, laponite, a synthetic clay, was introduced. Laponite acts as an inhibitor to crystal a growth and also as a hard template for the mesostructure. High surface area and ordered pore structure were observed in the stabilized zirconia. The results show that the formation of the MSU structure is attributed to reverse hexagonal micelles, which are the products of the cooperative self-assembly of organic and inorganic species in the solid-state synthesis system with crystalline water and hygroscopic water present.
Resumo:
Columnar cell lesions (CCLs) of the breast are a spectrum of lesions that have posed difficulties to pathologists for many years, prompting discussion concerning their biologic and clinical significance. We present a study of CCL in context with hyperplasia of usual type (HUT) and the more advanced lesions ductal carcinoma in situ (DCIS) and invasive ductal carcinoma. A total of 81 lesions from 18 patients were subjected to a comprehensive morphologic review based upon a modified version of Schnitt's classification system for CCL, immunophenotypic analysis (estrogen receptor [ER], progesterone receptor [PgR], Her2/neu, cytokeratin 5/6 [CK5/6], cytokeratin 14 [CK14], E-cadherin, p53) and for the first time, a whole genome molecular analysis by comparative genomic hybridization. Multiple CCLs from 3 patients were studied in particular detail, with topographic information and/or showing a morphologic spectrum of CCL within individual terminal duct lobular units. CCLs were ER an PgR positive, CK5/6 and CK14 negative, exhibit low numbers of genetic alterations and recurrent 16q loss, features that are similar to those of low grade in situ and invasive carcinoma. The molecular genetic profiles closely reflect the degree of proliferation and atypia in CCL, indicating some of these lesions represent both a morphologic and molecular continuum. In addition, overlapping chromosomal alterations between CCL and more advanced lesions within individual terminal duct lobular units suggest a commonality in molecular evolution. These data further support the hypothesis that CCLs are a nonobligate, intermediary step in the development of some forms of low grade in situ and invasive carcinoma. Copyright: © 2005 Lippincott Williams & Wilkins, Inc.
Resumo:
Study objectives: Currently, esophageal pressure monitoring is the "gold standard" measure for inspiratory efforts, hut its invasive nature necessitates a better tolerated and noninvasive method to be used on children. Pulse transit time (PTT) has demonstrated its potential as a noninvasive surrogate marker for inspiratory efforts. The principle velocity determinant of PTT is the change in stiffness of the arterial wall and is inversely correlated to BP. Moreover, PTT has been shown to identify changes in inspiratory effort via the BP fluctuations induced by negative pleural pressure swings. In this study, the capability of PTT to classify respiratory, events during sleep as either central or obstructive in nature was investigated. Setting and participants: PTT measure was used in adjunct to routine overnight polysomnographic studies performed on 33 children (26 boys and 7 girls; mean +/- SD age, 6.7 +/- 3.9 years). The accuracy of PTT measurements was then evaluated against scored corresponding respiratory events in the polysomnography recordings. Results: Three hundred thirty-four valid respiratory events occurred and were analyzed. One hundred twelve obstructive events (OEs) showed a decrease in mean PTT over a 10-sample window that had a probability of being correctly ranked below the baseline PTT during tidal breathing of 0.92 (p < 0.005); 222 central events (CEs) showed a decrease in the variance of PTT over a 10-sample window that had a probability of being ranked below the baseline PTT of 0.94 (p < 0.005). This indicates that, at a sensitivity of 0.90, OEs can be detected with a specificity of 0.82 and CEs can be detected with a specificity of 0.80. Conclusions: PTT is able to categorize CEs and OEs accordingly in the absence of motion artifacts, including hypopneas. Hence, PTT shows promise to differentiate respiratory, events accordingly and can be an important diagnostic tool in pediatric respiratory sleep studies.< 0.005); 222 central events (CEs) showed a decrease in the variance of PTT over a 10-sample window that had a probability of being ranked below the baseline PTT of 0.94 (p < 0.005). This indicates that, at a sensitivity of 0.90, OEs can be detected with a specificity of 0.82 and CEs can be detected with a specificity of 0.80. Conclusions: PTT is able to categorize CEs and OEs accordingly in the absence of motion artifacts, including hypopneas. Hence, PTT shows promise to differentiate respiratory, events accordingly and can be an important diagnostic tool in pediatric respiratory sleep studies.');"
Resumo:
Changes in arterial distensibility have been widely used to identify the presence of cardiovascular abnormalities like hypertension. Pulse wave velocity (PWV) has shown to be related to arterial distensibility. However, the lack of suitable techniques to measure PWV nonintrusively has impeded its clinical usefulness. Pulse transit time (PTT) is a noninvasive technique derived from the principle of PWV. PTT has shown its capabilities in cardiovascular and cardiorespiratory studies in adults. However, no known study has been conducted to understand the suitability and utility of PTT to estimate PWV in children. Two computational methods to derive PWV from PTT values obtained from 23 normotensive Caucasian children (19 males, aged 5-12 years old) from their finger and toe were conducted. Furthermore, the effects of adopting different postures on the PWV derivations were investigated. Statistical analyses were performed in comparison with two previous PWV studies conducted on children. Results revealed that PWV derived from the upper limb correlated significantly (P
Resumo:
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease with death usually occurring because of respiratory failure. Signs of early respiratory insufficiency are usually first detectable in sleep. Objective: To study the presentation of sleep-related breathing disorder (SRBD) in patients with DMD. Method:> A retrospective review of patients with DMD attending a tertiary paediatric sleep disorder clinic over a 5-year period. Symptoms, lung function and polysomnographic indices were reviewed. Results: A total of 34 patients with DMD were referred for respiratory assessment (1-15 years). Twenty-two (64%) reported sleep-related symptomatology. Forced vital capacity (FVC) was between 12 and 107% predicted (n = 29). Thirty-two progressed to have polysomnography of which 15 were normal studies (median age: 10 years) and 10 (31%) were diagnostic of obstructive sleep apnoea (OSA) (median age: 8 years). A total of 11 patients (32%) showed hypoventilation (median age: 13 years) during the 5-year period and non-invasive ventilation (NIV) was offered to them. The median FVC of this group was 27% predicted. There was a significant improvement in the apnoea/hypopnoea index (AHI) (mean difference = 11.31, 95% CI = 5.91-16.70, P = 0.001) following the institution of NIV. Conclusions: The prevalence of SRBD in DMD is significant. There is a bimodal presentation of SRBD, with OSA found in the first decade and hypoventilation more commonly seen at the beginning of the second decade. Polysomnography is recommended in children with symptoms of OSA, or at the stage of becoming wheelchair-bound. In patients with the early stages of respiratory failure, assessment with polysomnography-identified sleep hypoventilation and assisted in initiating NIV.
Resumo:
Pulse oximetry is commonly used as an arterial blood oxygen saturation (SaO(2)) measure. However, its other serial output, the photoplethysmography (PPG) signal, is not as well studied. Raw PPG signals can be used to estimate cardiovascular measures like pulse transit time (PTT) and possibly heart rate (HR). These timing-related measurements are heavily dependent on the minimal variability in phase delay of the PPG signals. Masimo SET (R) Rad-9 (TM) and Novametrix Oxypleth oximeters were investigated for their PPG phase characteristics on nine healthy adults. To facilitate comparison, PPG signals were acquired from fingers on the same hand in a random fashion. Results showed that mean PTT variations acquired from the Masimo oximeter (37.89 ms) were much greater than the Novametrix (5.66 ms). Documented evidence suggests that I ms variation in PTT is equivalent to I mmHg change in blood pressure. Moreover, the PTT trend derived from the Masimo oximeter can be mistaken as obstructive sleep apnoeas based on the known criteria. HR comparison was evaluated against estimates attained from an electrocardiogram (ECG). Novametrix differed from ECG by 0.71 +/- 0.58% (p < 0.05) while Masimo differed by 4.51 +/- 3.66% (p > 0.05). Modem oximeters can be attractive for their improved SaO(2) measurement. However, using raw PPG signals obtained directly from these oximeters for timing-related measurements warrants further investigations.
Resumo:
The Swinfen Charitable Trust (SCT) provided two kinds of telemedical support to Iraq during 2004. Starting in January 2004, the Al-Yarmouk Teaching Hospital in Baghdad was able to refer cases into the well established global e-health network that the SCT has operated for the last five years. (In the first quarter of 2004, the SCT dealt with a total of 57 referrals from 15 hospitals in eight countries.) Two cases were referred from Baghdad in March 2004, both gynaecological, which were dealt with by consultants from the UK and Australia. The SCT administrators visited Basrah during April 2004 and met Iraqi doctors at the Shaibah Hospital as part of the international initiatives to improve health care there. Following this visit, the SCT network expanded to include another four hospitals in Iraq (Table 1). In addition, the SCT provided an electronic health records (EHR) system to support the rebuilding of maternity services, which has been led by the British Royal Colleges. The maternity records system is a Web-based EHR system, running on a secure server, which allows integrated access from antenatal clinics, from hospitals and from postnatal clinics in Iraq. Patients can view their own notes, thus promoting ownership of medical information, and doctors can view the notes of their own patients, from any Internet-connected PC. No special software is required by the user.
Resumo:
Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.
Resumo:
Characteristics obtained from peripheral pulses can be used to assess the status of cardiovascular system of subjects. However, nonintrusive techniques are preferred when prolonged monitoring is required for their comfort. Pulse transit time ( PTT) measurement has showed its potentials to monitor timing changes in peripheral pulse in cardiovascular and respiratory studies. In children, the common peripheries used for these studies are fingers or toes. Presently, there is no known study conducted on children to investigate the possible physiologic parameters that can confound PTT measure at these sites. In this study, PTT values from both peripheral sites were recorded from 55 healthy Caucasian children ( 39 male) with mean age of 8.4 +/- 2.3 years ( range 5 - 12 years). Peripheries' path length, heart rate, systolic blood pressure, diastolic blood pressure ( DBP) and mean arterial pressure ( MAP) were measured to investigate their contributions to PTT measurement. The results reveal that PTT is significantly related to all parameters ( P< 0.05), except for DBP and MAP. Age is observed to be the dominant factor that affects PTT at both peripheries in a child. Regression equations for PTT were derived for measuring from a finger and toe, ( 6.09 age + 189.2) ms and ( 6.70 age + 243.0) ms, respectively.
Resumo:
Pulse transit time (PTT) is a non-invasive measure of arterial compliance. It can be used to assess instantaneous blood pressure (BP) changes in continual cardiovascular measurement such as during overnight respiratory sleep studies. In these studies, periodic changes in limb position can occur randomly. However, little is known about their possible effects on PTT monitored on the various limbs. The objective of this study was to evaluate PTT differences on all four limbs during two positional changes (lowering and raising of a limb). Ten healthy adults (seven male) with a mean age of 27.0 years were recruited in this study. The results showed that the limb that underwent a positional change had significant (p < 0.05) local PTT differences when compared to its nominal baseline value, whereas PTT changes in the other remaining limbs were insignificant (p > 0.05). The mean PTT value measured from a vertically-raised limb increased by 42.7 ms, while it decreased by 28.1 ms with a half-lowered limb. The PTT differences observed during positional change can be contributed to by the complex interactions between hydrostatic pressure changes, autonomic and local autoregulation experienced in these limbs. Hence the findings herein suggest that PTT is able to reflect local circulatory responses despite changes in the position of other limbs. This can be useful in prolonged clinical observations where limb movements are expected.
Resumo:
Without introduction of any stabilizer, the mesoporous nanocrystalline zirconia with lamellar and MSU structure was obtained via solid state reaction coupled with surfactant templating method. The phase, surface area and pore structure of zirconia prepared with this novel method could be designed, tailored and controlled by varying synthesis parameters. The phase transformation was controlled by particle size. The mesostructure possesses nanocrystalline pore wall, which renders it more thermally stable than amorphous framework. The results suggest strongly that in solid state synthesis system mesostructure formation still follow the supramolecular self-assembly mechanism. The lamellar and reverse hexagonal structure could be transformed at different OH-/Zr molar ratios in order to sustain the low surface energy of the mesophases. The lamellar structure was preferred at higher OH-/Zr molar ratios but reverse hexagonal was at low ratios.
Resumo:
Document classification is a supervised machine learning process, where predefined category labels are assigned to documents based on the hypothesis derived from training set of labelled documents. Documents cannot be directly interpreted by a computer system unless they have been modelled as a collection of computable features. Rogati and Yang [M. Rogati and Y. Yang, Resource selection for domain-specific cross-lingual IR, in SIGIR 2004: Proceedings of the 27th annual international conference on Research and Development in Information Retrieval, ACM Press, Sheffied: United Kingdom, pp. 154-161.] pointed out that the effectiveness of document classification system may vary in different domains. This implies that the quality of document model contributes to the effectiveness of document classification. Conventionally, model evaluation is accomplished by comparing the effectiveness scores of classifiers on model candidates. However, this kind of evaluation methods may encounter either under-fitting or over-fitting problems, because the effectiveness scores are restricted by the learning capacities of classifiers. We propose a model fitness evaluation method to determine whether a model is sufficient to distinguish positive and negative instances while still competent to provide satisfactory effectiveness with a small feature subset. Our experiments demonstrated how the fitness of models are assessed. The results of our work contribute to the researches of feature selection, dimensionality reduction and document classification.