927 resultados para ground-based measurement


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schrödinger’s cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored ‘quantum-classical’ transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many countries wind energy has become an indispensable part of the electricity generation mix. The opportunity for ground based wind turbine systems are becoming more and more constrained due to limitations on turbine hub heights, blade lengths and location restrictions linked to environmental and permitting issues including special areas of conservation and social acceptance due to the visual and noise impacts. In the last decade there have been numerous proposals to harness high altitude winds, such as tethered kites, airfoils and dirigible based rotors. These technologies are designed to operate above the neutral atmospheric boundary layer of 1,300 m, which are subject to more powerful and persistent winds thus generating much higher electricity capacities. This paper presents an in-depth review of the state-of-the-art of high altitude wind power, evaluates the technical and economic viability of deploying high altitude wind power as a resource in Northern Ireland and identifies the optimal locations through considering wind data and geographical constraints. The key findings show that the total viable area over Northern Ireland for high altitude wind harnessing devices is 5109.6 km2, with an average wind power density of 1,998 W/m2 over a 20-year span, at a fixed altitude of 3,000 m. An initial budget for a 2MW pumping kite device indicated a total cost £1,751,402 thus proving to be economically viable with other conventional wind-harnessing devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combustion noise is becoming increasingly important as a major noise source in aeroengines and ground based gas turbines. This is partially because advances in design have reduced the other noise sources, and partially because next generation combustion modes burn more unsteadily, resulting in increased external noise from the combustion. This review reports recent progress made in understanding combustion noise by theoretical, numerical and experimental investigations. We first discuss the fundamentals of the sound emission from a combustion region. Then the noise of open turbulent flames is summarized. We subsequently address the effects of confinement on combustion noise. In this case not only is the sound generated by the combustion influenced by its transmission through the boundaries of the combustion chamber, there is also the possibility of a significant additional source, the so-called ‘indirect’ combustion noise. This involves hot spots (entropy fluctuations) or vorticity perturbations produced by temporal variations in combustion, which generate pressure waves (sound) as they accelerate through any restriction at the exit of the combustor. We describe the general characteristics of direct and indirect noise. To gain further insight into the physical phenomena of direct and indirect sound, we investigate a simple configuration consisting of a cylindrical or annular combustor with a low Mach number flow in which a flame zone burns unsteadily. Using a low Mach number approximation, algebraic exact solutions are developed so that the parameters controlling the generation of acoustic, entropic and vortical waves can be investigated. The validity of the low Mach number approximation is then verified by solving the linearized Euler equations numerically for a wide range of inlet Mach numbers, stagnation temperature ratios, frequency and mode number of heat release fluctuations. The effects of these parameters on the magnitude of the waves produced by the unsteady combustion are investigated. In particular the magnitude of the indirect and direct noise generated in a model combustor with a choked outlet is analyzed for a wide range of frequencies, inlet Mach numbers and stagnation temperature ratios. Finally, we summarize some of the unsolved questions that need to be the focus of future research

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis uses a three-dimensional, first-principles model of the ionosphere in combination with High Frequency (HF) raytracing model to address key topics related to the physics of HF propagation and artificial ionospheric heating. In particular: 1. Explores the effect of the ubiquitous electron density gradients caused by Medium Scale Traveling Ionospheric Disturbances (MSTIDs) on high-angle of incidence HF radio wave propagation. Previous studies neglected the all-important presence of horizontal gradients in both the cross- and down-range directions, which refract the HF waves, significantly changing their path through the ionosphere. The physics-based ionosphere model SAMI3/ESF is used to generate a self-consistently evolving MSTID that allows for the examination of the spatio-temporal progression of the HF radio waves in the ionosphere. 2. Tests the potential and determines engineering requirements for ground- based high power HF heaters to trigger and control the evolution of Equatorial Spread F (ESF). Interference from ESF on radio wave propagation through the ionosphere remains a critical issue on HF systems reliability. Artificial HF heating has been shown to create plasma density cavities in the ionosphere similar to those that may trigger ESF bubbles. The work explores whether HF heating may trigger or control ESF bubbles. 3. Uses the combined ionosphere and HF raytracing models to create the first self-consistent HF Heating model. This model is utilized to simulate results from an Arecibo experiment and to provide understanding of the physical mechanism behind observed phenomena. The insights gained provide engineering guidance for new artificial heaters that are being built for use in low to middle latitude regions. In accomplishing the above topics: (i) I generated a model MSTID using the SAMI3/ESF code, and used a raytrace model to examine the effects of the MSTID gradients on radio wave propagation observables; (ii) I implemented a three- dimensional HF heating model in SAMI3/ESF and used the model to determine whether HF heating could artificially generate an ESF bubble; (iii) I created the first self-consistent model for artificial HF heating using the SAMI3/ESF ionosphere model and the MoJo raytrace model and ran a series of simulations that successfully modeled the results of early artificial heating experiments at Arecibo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis presents experimental results, simulations, and theory on turbulence excited in magnetized plasmas near the ionosphere’s upper hybrid layer. The results include: The first experimental observations of super small striations (SSS) excited by the High-Frequency Auroral Research Project (HAARP) The first detection of high-frequency (HF) waves from the HAARP transmitter over a distance of 16x10^3 km The first simulations indicating that upper hybrid (UH) turbulence excites electron Bernstein waves associated with all nearby gyroharmonics Simulation results that indicate that the resulting bulk electron heating near the upper hybrid (UH) resonance is caused primarily by electron Bernstein waves parametrically excited near the first gyroharmonic. On the experimental side we present two sets of experiments performed at the HAARP heating facility in Alaska. In the first set of experiments, we present the first detection of super-small (cm scale) striations (SSS) at the HAARP facility. We detected density structures smaller than 30 cm for the first time through a combination of satellite and ground based measurements. In the second set of experiments, we present the results of a novel diagnostic implemented by the Ukrainian Antarctic Station (UAS) in Verdansky. The technique allowed the detection of the HAARP signal at a distance of nearly 16 Mm, and established that the HAARP signal was injected into the ionospheric waveguide by direct scattering off of dekameter-scale density structures induced by the heater. On the theoretical side, we present results of Vlasov simulations near the upper hybrid layer. These results are consistent with the bulk heating required by previous work on the theory of the formation of descending artificial ionospheric layers (DIALs), and with the new observations of DIALs at HAARP’s upgraded effective radiated power (ERP). The simulations that frequency sweeps, and demonstrate that the heating changes from a bulk heating between gyroharmonics, to a tail acceleration as the pump frequency is swept through the fourth gyroharmonic. These simulations are in good agreement with experiments. We also incorporate test particle simulations that isolate the effects of specific wave modes on heating, and we find important contributions from both electron Bernstein waves and upper hybrid waves, the former of which have not yet been detected by experiments, and have not been previously explored as a driver of heating. In presenting these results, we analyzed data from HAARP diagnostics and assisted in planning the second round of experiments. We integrated the data into a picture of experiments that demonstrated the detection of SSS, hysteresis effects in simulated electromagnetic emission (SEE) features, and the direct scattering of the HF pump into the ionospheric waveguide. We performed simulations and analyzed simulation data to build the understanding of collisionless heating near the upper hybrid layer, and we used these simulations to show that bulk electron heating at the upper hybrid layer is possible, which is required by current theories of DAIL formation. We wrote a test particle simulation to isolate the effects of electron Bernstein waves and upper hybrid layers on collisionless heating, and integrated this code to work with both the output of Vlasov simulations and the input for simulations of DAIL formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main aim of this study was to evaluate the impact of the urban pollution plume from the city of Manaus by emissions from mobile and stationary sources in the atmospheric pollutants concentrations of the Amazon region, by using The Weather Research and Forecasting with Chemistry (WRF-Chem) model. The air pollutants analyzed were CO, NOx, SO2, O3, PM2.5, PM10 and VOCs. The model simulations have been configured with a grid spacing of 3 km, with 190 x and 136 y grid points in horizontal spacing, centered in the city of Manaus during the period of 17 and 18 of March 2014. The anthropogenic emissions inventories have gathered from mobile sources that were estimated the emissions of light and heavy-duty vehicles classes. In addition, the stationary sources have considered the thermal power plants by the type of energy sources used in the region as well as the emissions from the refinery located in Manaus. Various scenarios have been defined with numerical experiments that considered only emissions by biogenic, mobile and stationary sources, and replacement fuel from thermal power plant, along with a future scenario consisting with twice as much anthropogenic emissions. A qualitative assessment of simulation with base scenario has also been carried out, which represents the conditions of the region in its current state, where several statistical methods were used in order to compare the results of air pollutants and meteorological fields with observed ground-based data located in various points in the study grid. The qualitative analysis showed that the model represents satisfactorily the variables analyzed from the point of view of the adopted parameters. Regarding the simulations, defined from the base scenarios, the numerical experiments indicate relevant results such as: it was found that the stationary sources scenario, where the thermal power plants are predominant, resulted in the highest concentrations, for all air pollutants evaluated, except for carbon monoxide when compared to the vehicle emissions scenario; The replacement of the energy matrix of current thermal power plants for natural gas have showed significant reductions in pollutants analyzed, for instance, 63% reductions of NOx in the contribution of average concentration in the study grid; A significant increase in the concentrations of chemical species was observed in a futuristic scenario, reaching up to a 81% increase in peak concentrations of SO2 in the study area. The spatial distributions of the scenarios have showed that the air pollution plume from Manaus is predominantly west and southwest, where it can reach hundreds of kilometers to areas dominated by original soil covering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although the value of primary forests for biodiversity conservation is well known, the potential biodiversity and conservation value of regenerating forests remains controversial. Many factors likely contribute to this, including: 1. the variable ages of regenerating forests being studied (often dominated by relatively young regenerating forests); 2. the potential for confounding on-going human disturbance (such as logging and hunting); 3. the relatively low number of multi-taxa studies; 4. the lack of studies that directly compare different historic disturbances within the same location; 5. contrasting patterns from different survey methodologies and the paucity of knowledge on the impacts across different vertical levels of rainforest biodiversity (often due to a lack of suitable methodologies available to assess them). We also know relatively little as to how biodiversity is affected by major current impacts, such as unmarked rainforest roads, which contribute to this degradation of habitat and fragmentation. This thesis explores the potential biodiversity value of regenerating rainforests under the best of scenarios and seeks to understand more about the impact of current human disturbance to biodiversity; data comes from case studies from the Manu and Sumaco Biosphere Reserves in the Western Amazon. Specifically, I compare overall biodiversity and conservation value of a best case regenerating rainforest site with a selection of well-studied primary forest sites and with predicted species lists for the region; including a focus on species of key conservation concern. I then investigate the biodiversity of the same study site in reference to different types of historic anthropogenic disturbance. Following this I investigate the impacts to biodiversity from an unmarked rainforest road. In order to understand more about the differential effects of habitat disturbance on arboreal diversity I directly assess how patterns of butterfly biodiversity vary between three vertical strata. Although assessments within the canopy have been made for birds, invertebrates and bats, very few studies have successfully targeted arboreal mammals. I therefore investigate the potential of camera traps for inventorying arboreal mammal species in comparison with traditional methodologies. Finally, in order to investigate the possibility that different survey methodologies might identify different biodiversity patterns in habitat disturbance assessments, I investigate whether two different but commonly used survey methodologies used to assess amphibians, indicate the same or different responses of amphibian biodiversity to historic habitat change by people. The regenerating rainforest study site contained high levels of species richness; both in terms of alpha diversity found in nearby primary forest areas (87% ±3.5) and in terms of predicted primary forest diversity from the region (83% ±6.7). This included 89% (39 out of 44) of the species of high conservation concern predicted for the Manu region. Faunal species richness in once completely cleared regenerating forest was on average 13% (±9.8) lower than historically selectively logged forest. The presence of the small unmarked road significantly altered levels of faunal biodiversity for three taxa, up to and potentially beyond 350m into the forest interior. Most notably, the impact on biodiversity extended to at least 32% of the whole reserve area. The assessment of butterflies across strata showed that different vertical zones within the same rainforest responded differently in areas with different historic human disturbance. A comparison between forest regenerating after selective logging and forest regenerating after complete clearance, showed that there was a 17% greater reduction in canopy species richness in the historically cleared forest compared with the terrestrial community. Comparing arboreal camera traps with traditional ground-based techniques suggests that camera traps are an effective tool for inventorying secretive arboreal rainforest mammal communities and detect a higher number of cryptic species. Finally, the two survey methodologies used to assess amphibian communities identified contrasting biodiversity patterns in a human modified rainforest; one indicated biodiversity differences between forests with different human disturbance histories, whereas the other suggested no differences between forest disturbance types. Overall, in this thesis I find that the conservation and biodiversity value of regenerating and human disturbed tropical forest can potentially contribute to rainforest biodiversity conservation, particularly in the best of circumstances. I also highlight the importance of utilising appropriate study methodologies that to investigate these three-dimensional habitats, and contribute to the development of methodologies to do so. However, care should be taken when using different survey methodologies, which can provide contrasting biodiversity patterns in response to human disturbance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Atacama Desert has been pointed out as one of the places on earth where the highest surface irradiance may occur. This area is characterized by its high altitude, prevalent cloudless conditions and relatively low columns of ozone and water vapor. Aimed at the characterization of the solar spectrum in the Atacama Desert, we carried out in February-March 2015 ground-based measurements of the spectral irradiance (from the ultraviolet to the near infrared) at seven locations that ranged from the city of Antofagasta (on the southern pacific coastline) to the Chajnantor Plateau (5,100 m altitude). Our spectral measurements allowed us to retrieve the total ozone column, the precipitable water, and the aerosol properties at each location. We found that changes in these parameters, as well as the shorter optical path length at high-altitude locations, lead to significant increases in the surface irradiance with the altitude. Our measurements show that, in the range 0-5100 m altitude, surface irradiance increases with the altitude by about 27% in the infrared range, 6% in the visible range, and 20% in the ultraviolet range. Spectral measurements carried out at the Izana Observatory (Tenerife, Spain), in Hannover (Germany) and in Santiago (Chile), were used for further comparisons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the context of this work we evaluated a multisensory, noninvasive prototype platform for shake flask cultivations by monitoring three basic parameters (pH, pO2 and biomass). The focus lies on the evaluation of the biomass sensor based on backward light scattering. The application spectrum was expanded to four new organisms in addition to E. coli K12 and S. cerevisiae [1]. It could be shown that the sensor is appropriate for a wide range of standard microorganisms, e.g., L. zeae, K. pastoris, A. niger and CHO-K1. The biomass sensor signal could successfully be correlated and calibrated with well-known measurement methods like OD600, cell dry weight (CDW) and cell concentration. Logarithmic and Bleasdale-Nelder derived functions were adequate for data fitting. Measurements at low cell concentrations proved to be critical in terms of a high signal to noise ratio, but the integration of a custom made light shade in the shake flask improved these measurements significantly. This sensor based measurement method has a high potential to initiate a new generation of online bioprocess monitoring. Metabolic studies will particularly benefit from the multisensory data acquisition. The sensor is already used in labscale experiments for shake flask cultivations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent legislation and initiatives set forth high academic expectations for all high school graduates in the area of reading (National Governors Association Center for Best Practices, 2010; Every Student Succeeds Act, 2015). To determine which students need additional support to meet these reading standards, teachers can conduct universal screening using formative assessments. Maze Curriculum-Based Measurement (Maze-CBM) is a commonly used screening and progress monitoring assessment that the National Center on Intensive Intervention (2013) and the Center on Instruction (Torgesen & Miller, 2009) recommend. Despite the recommendation to use Maze-CBM, little research has been conducted on the reliability and validity of Maze-CBM for measuring reading ability for students at the secondary level (Mitchell & Wexler, 2016). In the papers included in this dissertation, I present an initial investigation into the use of Maze-CBM for secondary students. In the first paper, I investigated prior studies of Maze-CBM for students in Grades 6 through 12. Next, in the second paper, I investigated the alternate-form reliability and validity for screening students in Grades 9 and 10 using signal detection theory methods. In the third paper, I examined the effect of genre on Maze-CBM scores with a sample of students in Grades 9 and 10 using multilevel modeling. When writing these three papers, I discovered several important findings related to Maze-CBM. First, there are few studies that have investigated the technical adequacy of Maze-CBM for screening and progress monitoring students in Grades 6 through 12. Additionally, only two studies (McMaster, Wayman, & Cao, 2006; Pierce, McMaster, & Deno, 2010) examined the technical adequacy of Maze-CBM for high school students. A second finding is that the reliability of Maze-CBM is often below acceptable levels for making screening decisions or progress monitoring decisions (.80 and above and .90 and above, respectively; Salvia, Ysseldyke, & Bolt, 2007) for secondary students. A third finding is that Maze-CBM scores show promise of being a valid screening tool for reading ability of secondary students. Finally, I found that the genre of the text used in the Maze-CBM assessment does impact scores on Maze-CBM for students in Grades 9 and 10.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La resistividad aparente del suelo resulta útil para conocer las características geofísicas del suelo, para sistemas de puesta a tierra e incluso para la exploración de minerales. Los métodos de prospección geoeléctrica permiten obtener el valor de resistividad del suelo en distintos puntos del terreno mediante la inyección de corriente eléctrica continua utilizando electrodos ubicados en el suelo. El procedimiento de obtener diferentes medidas de resistividad en distintos puntos y de manera continua resulta un proceso complicado y demorado. Por tales motivos, el objetivo de este proyecto consiste en diseñar e implementar un sistema telemétrico para la medición de la resistividad del suelo, el cual realice la conmutación automática de los electrodos para obtener mediciones en distintos puntos y que transmita los datos a una estación fija mediante módulos de radio frecuencia. La estación fija posee un minicomputador Raspberry PI que recibe los datos, los visualiza a tiempo real en una pantalla LCD y los guarda en un archivo de texto. Adicionalmente tiene instalado un servidor FTP que permite la descarga de los archivos. Para realizar las mediciones se utilizan dos métodos de prospección geoeléctrica: sondeo eléctrico vertical y calicata eléctrica mediante las configuraciones de electrodos, Wenner y Schlumberger. Los datos de resistividad obtenidos con estos métodos permiten realizar gráficas de la variación de resistividad con respecto a la profundidad y la distancia. Además, se comparan los datos de resistividad con respecto a las precipitaciones pluviales ocurridas en un rango de tiempo determinado y se obtiene una relación inversamente proporcional.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tropospheric ozone (O3) and carbon monoxide (CO) pollution in the Northern Hemisphere is commonly thought to be of anthropogenic origin. While this is true in most cases, copious quantities of pollutants are emitted by fires in boreal regions, and the impact of these fires on CO has been shown to significantly exceed the impact of urban and industrial sources during large fire years. The impact of boreal fires on ozone is still poorly quantified, and large uncertainties exist in the estimates of the fire-released nitrogen oxides (NO x ), a critical factor in ozone production. As boreal fire activity is predicted to increase in the future due to its strong dependence on weather conditions, it is necessary to understand how these fires affect atmospheric composition. To determine the scale of boreal fire impacts on ozone and its precursors, this work combined statistical analysis of ground-based measurements downwind of fires, satellite data analysis, transport modeling and the results of chemical model simulations. The first part of this work focused on determining boreal fire impact on ozone levels downwind of fires, using analysis of observations in several-days-old fire plumes intercepted at the Pico Mountain station (Azores). The results of this study revealed that fires significantly increase midlatitude summertime ozone background during high fire years, implying that predicted future increases in boreal wildfires may affect ozone levels over large regions in the Northern Hemisphere. To improve current estimates of NOx emissions from boreal fires, we further analyzed ΔNOy /ΔCO enhancement ratios in the observed fire plumes together with transport modeling of fire emission estimates. The results of this analysis revealed the presence of a considerable seasonal trend in the fire NOx /CO emission ratio due to the late-summer changes in burning properties. This finding implies that the constant NOx /CO emission ratio currently used in atmospheric modeling is unrealistic, and is likely to introduce a significant bias in the estimated ozone production. Finally, satellite observations were used to determine the impact of fires on atmospheric burdens of nitrogen dioxide (NO2 ) and formaldehyde (HCHO) in the North American boreal region. This analysis demonstrated that fires dominated the HCHO burden over the fires and in plumes up to two days old. This finding provides insights into the magnitude of secondary HCHO production and further enhances scientific understanding of the atmospheric impacts of boreal fires.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent developments have made researchers to reconsider Lagrangian measurement techniques as an alternative to their Eulerian counterpart when investigating non-stationary flows. This thesis advances the state-of-the-art of Lagrangian measurement techniques by pursuing three different objectives: (i) developing new Lagrangian measurement techniques for difficult-to-measure, in situ flow environments; (ii) developing new post-processing strategies designed for unstructured Lagrangian data, as well as providing guidelines towards their use; and (iii) presenting the advantages that the Lagrangian framework has over their Eulerian counterpart in various non-stationary flow problems. Towards the first objective, a large-scale particle tracking velocimetry apparatus is designed for atmospheric surface layer measurements. Towards the second objective, two techniques, one for identifying Lagrangian Coherent Structures (LCS) and the other for characterizing entrainment directly from unstructured Lagrangian data, are developed. Finally, towards the third objective, the advantages of Lagrangian-based measurements are showcased in two unsteady flow problems: the atmospheric surface layer, and entrainment in a non-stationary turbulent flow. Through developing new experimental and post-processing strategies for Lagrangian data, and through showcasing the advantages of Lagrangian data in various non-stationary flows, the thesis works to help investigators to more easily adopt Lagrangian-based measurement techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is focused on improving the calibration accuracy of sub-millimeter astronomical observations. The wavelength range covered by observational radio astronomy has been extended to sub-millimeter and far infrared with the advancement of receiver technology in recent years. Sub-millimeter observations carried out with airborne and ground-based telescopes typically suffer from 10% to 90% attenuation of the astronomical source signals by the terrestrial atmosphere. The amount of attenuation can be derived from the measured brightness of the atmospheric emission. In order to do this, the knowledge of the atmospheric temperature and chemical composition, as well as the frequency-dependent optical depth at each place along the line of sight is required. The altitude-dependent air temperature and composition are estimated using a parametrized static atmospheric model, which is described in Chapter 2, because direct measurements are technically and financially infeasible. The frequency dependent optical depth of the atmosphere is computed with a radiative transfer model based on the theories of quantum mechanics and, in addition, some empirical formulae. The choice, application, and improvement of third party radiative transfer models are discussed in Chapter 3. The application of the calibration procedure, which is described in Chapter 4, to the astronomical data observed with the SubMillimeter Array Receiver for Two Frequencies (SMART), and the German REceiver for Astronomy at Terahertz Frequencies (GREAT), is presented in Chapters 5 and 6. The brightnesses of atmospheric emission were fitted consistently to the simultaneous multi-band observation data from GREAT at 1.2 ∼ 1.4 and 1.8 ∼ 1.9 THz with a single set of parameters of the static atmospheric model. On the other hand, the cause of the inconsistency between the model parameters fitted from the 490 and 810 GHz data of SMART is found to be the lack of calibration of the effective cold load temperature. Besides the correctness of atmospheric modeling, the stability of the receiver is also important to achieving optimal calibration accuracy. The stabilities of SMART and GREAT are analyzed with a special calibration procedure, namely the “load calibration". The effects of the drift and fluctuation of the receiver gain and noise temperature on calibration accuracy are discussed in Chapters 5 and 6. Alternative observing strategies are proposed to combat receiver instability. The methods and conclusions presented in this thesis are applicable to the atmospheric calibration of sub-millimeter astronomical observations up to at least 4.7 THz (the H channel frequency of GREAT) for observations carried out from ∼ 4 to 14 km altitude. The procedures for receiver gain calibration and stability test are applicable to other instruments using the same calibration approach as that for SMART and GREAT. The structure of the high performance, modular, and extensible calibration program used and further developed for this thesis work is presented in the Appendix C.