973 resultados para green policy
Resumo:
1:100,000 coastal wetland vegetation mapping for Queensland including mangrove communities, saltpans and saline grasslands. Mapping taken from Landsat TM images with ground truthing. Additional metadata is available for details of techniques and accuracy for each section of coastline. Data Currency for each section of coast: NT border to Flinders River - 1995 SE Gulf of Carpentaria - 1987, 1988, 1991, 1992 Cape York Peninsula - 1986-88, 1991 Cape Trib to Bowling Green Bay - 1997-99 The Burdekin Region - 1991 The Bowen Region - 1994-95 The Whitsunday Region - 1997 Repulse Bay - 1989 Central Qld - 1995, 1997 The Curtis Coast Region - 1997 Round Hill Head to Tin Can Inlet - 1997 Moreton Region - 1995. Article Links: 1/ #1662. Queensland Coastal Wetland Resources: the Northern Territory Border to Flinders River. Project Report. Information Series QI00099. 2/ #1663. Queensland Coastal Wetland Resources: Sand Bay to Keppel Bay. Project Report. Information Series QI00100. 3/ #1664. Queensland Coastal Wetland Resources: Cape Tribulation to Bowling Green Bay. Project Report. Information Series QI01064. 4/ #1666. Coastal Wetlands Resources Investigation of the Burdekin Delta for declaration as fisheries reserves. Report to Ocean Rescue 2000. Project Report. 5/ #1667. Queensland Coastal Wetland Resource Investigation of the Bowen Region: Cape Upstart to Gloucester Island. Project Report. 6/ #1784. Resource Assessment of the Tidal Wetland Vegetation of Western Cape York Peninsula, North Queensland, Report to Ocean Rescue 2000. Project Report. 7/ #1785. Marine Vegetation of Cape York Peninsula. Cape York Peninsula Land Use Strategy. Project Report. 8/ #3544. Queensland Coastal Wetland Resources: The Whitsunday Region. Project Report.Information Series QI01065. 9/ #3545. Queensland Coastal Wetland Resources: Round Hill Head to Tin Can Inlet. Project Report. Information Series QI99081.
Resumo:
Spontaneous mutation or chance seedling: discovered in the mid-1990s as a superior plant growing in a commercial field of “Common” Cynodon dactylon on Jimboomba Turf Company’s farm at Jimboomba in south-east Queensland. Selection criteria: vigorous lateral spread, high shoot density and turf quality, low inflorescence numbers, and darker green colour. In 1999 after observing the superior turf performance of this mutant plant as a small patch within a much larger paddock of “Common”, vegetative material was taken and propagated in clean ground elsewhere on the farm for multiplication and further trials in a variety of turf situations in south-east Queensland. Propagation: vegetative. Breeder: Lynn Davidson, Jimboomba, QLD. PBR Certificate Number 2640, Application Number 2002/282, granted 24 February 2005.
Resumo:
Ploidy: triploid interspecific hybrid (3n = 27 chromosomes). Plant: habit prostrate, creeping, type mat-forming, height very short, longevity perennial, spreading laterally by stolons and rhizomes. Stolon: compound nodes with up to 3 leaves, internode length very short, internode thickness very thin, colour grey-brown (RHS N199A) when exposed to sunlight. Culms: length very short. Leaf blade: shape linear-triangular, length short, width narrow, colour dark green (RHS 137B). Ligule: dense row of short white hairs. Inflorescence: digitate with 3(-4) very short spicate racemes, peduncle very short. (All RHS colour chart numbers refer to 2001 edition.) PBR Certificate Number 2641, Application Number 2002/305, granted 24 February 2005.
Resumo:
Spontaneous mutation: In 1996, vegetative material (later designated ‘TL2’) taken from a disease resistant mutant plant on the fifteenth green at Novotel Palm Cove resort course near Cairns was included an on-going program of selection and testing of promising ‘Tifgreen’ mutants by Tropical Lawns Pty Ltd. Selection criteria: healthy vigorous growth during the tropical wet season, dense fine-textured appearance under close mowing, and dark green leaves. In subsequent trials, ‘TL2’ was identified as the outstanding plant among selections of mutant ‘Tifgreen’ genotypes from other north Queensland sites in terms of colour, texture and density for greens use. Propagation: vegetative. Breeder: Terry Anderlini, Gordonvale, QLD. PBR Certificate Number 2639, Application Number 2002/268, granted 24 February 2005.
Resumo:
Chance seedling: observed in about 1989 as a distinctly coarser textured, densely matting, darker green mutant bermuda grass plant growing among the hybrid ‘Tifgreen’ on the eighth green at the Townsville Golf Course. Although ‘TL1’ was selected from a sward of the hybrid Bermuda grass ‘Tifgreen’, its inflorescence structure (4, not 3, racemes per inflorescence), agronomic attributes (e.g. its tolerance to certain herbicides), and its DNA profile are consistent with a chance seedling of Cynodon dactylon rather than a mutant plant of hybrid (C. dactylon x transvaalensis) origin. Selection criteria: exceptionally short stolon internodes resulting in an extremely tight knit stolon mat under close (c. 5-6 mm) but not very close (c. 3-4 mm) mowing; very deep, strong rhizome system; very dark green colour; tolerates shade better than other Australian bermuda grass varieties of common knowledge (except for ‘Plateau’A); and remains low growing under heavy tropical cloud cover even after 6-8 months. Designated ‘TL1’ by Tropical Lawns Pty Ltd and trialed successfully during the late 1990s and early 2000s in high wear situations (e.g. golf tees) in north Queensland. Propagation: vegetative. Breeder: Barry McDonagh, Townsville, QLD. PBR Certificate Number 2638, Application Number 2002/267, granted 24 February 2005.
Resumo:
Spontaneous mutation or chance seedling: discovered in 2001 as a superior plant growing among “Common” green couch on the breeder’s turf farm at Berries Road, Childers. A selected piece of sod was removed and broken into vegetative sprigs to propagate a larger area of this variety elsewhere on the breeder’s property. The original plant has now been multiplied vegetatively three times without showing any discernible off types. Selection criteria: dense prostrate habit and limited inflorescence production (giving a low mowing requirement), high turf quality, dark green colour. Propagation: vegetative. Breeder: Robert William Morrow, Childers, QLD. PBR Certificate Number 2844, Application Number 2004/035, granted 22 August 2005.
Resumo:
‘Grand Prix’ is a selection from a cross between ‘Wintergreen’ and ‘Couch 5’ (also designated C5). ‘Couch 5’ was a selection from an earlier series of crosses by the breeder between ‘Wintergreen’ and a number of Cynodon dactylon accessions, which were collected by the breeder from the Mornington Peninsula area of Victoria between 1986 and 1990. C5 was an experimental breeding line, and was not subsequently reserved as vegetative germplasm. Living material of C5 is no longer in existence. Following the crossing of ‘Couch 5’ and ‘Wintergreen’ in 1998, the resultant seed was germinated on moist blotting paper. Individual seedlings, a total of 150 in number, were planted into 150mm pots and these plants observed during 1998 and 1999. During the summer of 1999-2000, the majority of the seedling plants were culled on the basis of their shoot density, leaf texture, internode length, and colour. In the spring of 2000, the remaining 20 potted seedlings were planted individually into 4m2 plots at the Evergreen Turf farm at Pakenham (Victoria), and allowed to expand fully across these plots. The final selection of Seedling 12 (later designated DN12) in late 2002 was based on shoot density, leaf colour, turf quality, and reduced thatch accumulation as expressed in these plots. Propagation: the original plant has been multiplied through four (4) vegetative expansions prior to PBR application without showing any discernible off types. Breeder: David Nickson, Frankston, VIC. PBR Certificate Number 3133, Application Number 2005/291, granted 12 September 2006.
Resumo:
‘Winter Gem’ is a selection from a cross between ‘Wintergreen’ and Couch 5 (also designated C5). Couch 5 was a selection from an earlier series of crosses by the breeder between ‘Wintergreen’ and a number of Cynodon dactylon accessions, which were collected by the breeder from the Mornington Peninsula area of Victoria between 1986 and 1990. C5 was an experimental breeding line, and was not subsequently reserved as vegetative germplasm. Living material of C5 is no longer in existence. Following the crossing of Couch 5 and ‘Wintergreen’ in 1998, the resultant seed was germinated on moist blotting paper. Individual seedlings, a total of 150 in number, were planted into 150mm pots and these plants observed during 1998 and 1999. During the summer of 1999-2000, the majority of the seedling plants were culled on the basis of their shoot density, leaf texture, internode length, and colour. In the spring of 2000, the remaining 20 potted seedlings were planted individually into 4m2 plots at the Evergreen Turf farm at Pakenham (Victoria), and allowed to expand fully across these plots. The final selection of Seedling 9 (later designated DN9) in late 2002 was based on shoot density, leaf texture, and retention of winter colour as expressed in these plots. Propagation: The original plant had been multiplied through four (4) vegetative expansions prior to PBR application without showing any discernible off types. Breeder: David Nickson, Frankston, VIC. PBR Certificate Number 3132, Application Number 2005/290, granted 11 September 2006.
Resumo:
‘P18’ was first produced in 1992 and is a mutant genotype obtained from a hybrid Bermudagrass line believed to be ‘Tifdwarf’, which was grown in a greenhouse owned by H&H Seed Company in Yuma, Arizona. ‘P18’ was selected for its extremely fine leaf texture, its high shoot density under close mowing, its rapid growth rate, and its uniform dark green colour, and was subsequently evaluated for these traits and characteristics. Propagation: vegetative. Breeder: Howard E. Kaewer, Eden Prairie, MN, USA. PBR Application Number 2007/179, Certificate Number 3567, granted 13 August 2007.
Resumo:
‘AGRD’ was selected by the breeder, Dr Warren Hunt, from a variant area of winter active turf (probably ‘Tifway’ or ‘Tifgreen’) on a Hong Kong Golf Course in Apr 1996. A selection of this material was imported through vegetative quarantine to New Zealand for evaluation. Following a favourable assessment of its potential as a warm-season turfgrass variety under New Zealand conditions made based on its superior comparative performance relative to other Cynodon accessions in glasshouse and field trials, the New Zealand registered variety ‘Grasslands AgRiDark’ was released in 1999. PBR Certificate Number 3716, Application Number 2004/299, granted 20 January 2009.
Resumo:
The detection of sugarcane smut disease (Ustilago scitaminea) in the Bundaberg-Childers region of eastern Australia in 2006 triggered a comprehensive and united response from BSES Limited, Queensland Government and CANEGROWERS. The response to sugarcane smut in the Bundaberg-Childers area was the first test for the Emergency Plant Pest Response Deed, an agreement between Australian governments and plant industries to facilitate a response to a plant pest incursion. As part of this response and the subsequent inquiry, economic models of the likely pattern of spread and cost of the smut epidemic were prepared. This paper reviews the predictions of those models in the light of the subsequent three years' experience. It examines reasons for divergence from the modelled outcomes, some of which were good approximations of actual experience.
Resumo:
We report on ongoing research to develop a design theory for classes of information systems that allow for work practices that exhibit a minimal harmful impact on the natural environment. We call such information systems Green IS. In this paper we describe the building blocks of our Green IS design theory, which develops prescriptions for information systems that allow for: (1) belief formation, action formation and outcome measurement relating to (2) environmentally sustainable work practices and environmentally sustainable decisions on (3) a macro or micro level. For each element, we specify structural features, symbolic expressions, user abilities and goals required for the affordances to emerge. We also provide a set of testable propositions derived from our design theory and declare two principles of implementation.
Resumo:
The PhD thesis developed an economic model as an integral part of the current Health Impact Assessment (HIA) framework. Based on a Health Production Function approach, the model showed how to estimate economic benefits of positive health gains generated by transport investment programs and transport policies. Using Australian mortality and morbidity statistics and applying econometric analysis, the case study quantified health benefits induced by transport emission abatement policies in dollar terms for the Australian households. Finally, the thesis demonstrated transferability of the economic model through two example case studies, establishing a wider application capacity of the model.
Resumo:
Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.
Resumo:
Catches of sharks and bycatch in large-mesh nets and baited drumlines used by the Queensland Shark Control Program were examined to determine the efficacy of both gear types and assess fishing strategies that minimise their impacts. There were few significant differences in the size of both sharks and bycatch in the two gear types, apart from significantly smaller (p < 0.05) tiger sharks Galeocerdo cuvier being taken on drumlines and smaller green turtles Chelonia mydas in nets. Catch per unit effort showed orders of magnitude differences among species, even within the same family. Hammerhead sharks and rays were particularly vulnerable to net capture, whereas higher catch rates of tiger sharks were observed for drumlines. Nets caught more marine mammals, teleost fish and rays, whereas drumlines exhibited higher catch rates of the threatened loggerhead turtle Caretta caretta. Survival of most taxa (particularly obligate ram ventilators) was lower in nets than drumlines. Bycatch species (turtles and marine mammals) were able to swim to the surface to breathe when they were hooked on drumlines, enhancing their survival potential. Fishing strategies that recognise the different selectivity patterns of the gear can be developed to suit local biotic and abiotic conditions, although it is recognised that quantification of both ecological risk and risk to bathers is not a simple task.