788 resultados para fuzzy logic controller
Resumo:
The concept of an interline voltage controller (IVOLCON) to improve the power quality in a power distribution system is discussed. An IVOLCON consists of two shunt voltage source converters (VSCs) that are joined through a common dc bus. The VSCs are connected to two different feeders. The main aim of the IVOLCON is to control the PCC (Point of Common Coupling) bus voltages of the two feeders to pre-specified magnitudes. The phase angles of the PCC bus voltages are obtained such that the voltage across the common dc link remains constant. The structure, control and capability of the IVOLCON are described. The efficacy of the proposed configuration has been verified through simulation studies using PSCAD/EMTDC for voltage sags and feeder outage
Resumo:
This paper investigates the control of a HVDC link, fed from an AC source through a controlled rectifier and feeding an AC line through a controlled inverter. The overall objective is to maintain maximum possible link voltage at the inverter while regulating the link current. In this paper the practical feedback design issues are investigated with a view of obtaining simple, robust designs that are easy to evaluate for safety and operability. The investigations are applicable to back-to-back links used for frequency decoupling and to long DC lines. The design issues discussed include: (i) a review of overall system dynamics to establish the time scale of different feedback loops and to highlight feedback design issues; (ii) the concept of using the inverter firing angle control to regulate link current when the rectifier firing angle controller saturates; and (iii) the design issues for the individual controllers including robust design for varying line conditions and the trade-off between controller complexity and the reduction of nonlinearity and disturbance effects
Resumo:
In an open railway access market, the Infrastructure Provider (IP), upon the receipts of service bids from the Train Service Providers (TSPs), assigns track access rights according to its own business objectives and the merits of the bids; and produces the train service timetable through negotiations. In practice, IP chooses to negotiate with the TSPs one by one in such a sequence that IP optimizes its objectives. The TSP bids are usually very complicated, containing a large number of parameters in different natures. It is a difficult task even for an expert to give a priority sequence for negotiations from the contents of the bids. This study proposes the application of fuzzy ranking method to compare and prioritize the TSP bids in order to produce a negotiation sequence. The results of this study allow investigations on the behaviors of the stakeholders in bid preparation and negotiation, as well as evaluation of service quality in the open railway market.
Resumo:
With the recent regulatory reforms in a number of countries, railways resources are no longer managed by a single party but are distributed among different stakeholders. To facilitate the operation of train services, a train service provider (SP) has to negotiate with the infrastructure provider (IP) for a train schedule and the associated track access charge. This paper models the SP and IP as software agents and the negotiation as a prioritized fuzzy constraint satisfaction (PFCS) problem. Computer simulations have been conducted to demonstrate the effects on the train schedule when the SP has different optimization criteria. The results show that by assigning different priorities on the fuzzy constraints, agents can represent SPs with different operational objectives.
Resumo:
This paper compares the performance of two droop control schemes in a hybrid microgrid. With presence of both converter interfaced and inertial sources, the droop controller share power in a decentralized fashion. Both the droop controllers facilitate reactive power sharing based on voltage droop. However in frequency droop control, the real power sharing depends on the frequency, while in angle droop control, it depends on output voltage angle. For converter interfaced sources this reference voltage is tracked while for inertial DG, reference power for the prime mover is calculated from the reference angle with the proposed angle control scheme. This coordinated control scheme shows significant improvement in system performance. The comparison with the conventional frequency droop shows that the angle control scheme shares power with much lower frequency deviation. This is a significant improvement particularly in a frequent load changing scenario.
Resumo:
Evaluation, selection and finally decision making are all among important issues, which engineers face in long run of projects. Engineers implement mathematical and nonmathematical methods to make accurate and correct decisions, whenever needed. As extensive as these methods are, effects of any selected method on outputs achieved and decisions made are still suspicious. This is more controversial and challengeable, where evaluation is made among non-quantitative alternatives. In civil engineering and construction management problems, criteria include both quantitative and qualitative ones, such as aesthetic, construction duration, building and operation costs, and environmental considerations. As the result, decision making frequently takes place among non-quantitative alternatives. It should be noted that traditional comparison methods, including clear-cut and inflexible mathematics, have always been criticized. This paper demonstrates a brief review of traditional methods of evaluating alternatives. It also offers a new decision making method using, fuzzy calculations. The main focus of this research is some engineering issues, which have flexible nature and vague borders. Suggested method provides analyzability of evaluation for decision makers. It is also capable to overcome multi criteria and multi-referees problems. In order to ease calculations, a program named DeMA is introduced.
Resumo:
Magneto-rheological (MR) fluid damper is a semi-active control device that has recently received more attention by the vibration control community. But inherent nonlinear hysteresis character of magneto-rheological fluid dampers is one of the challenging aspects for utilizing this device to achieve high system performance. So the development of accurate model is necessary to take the advantage their unique characteristics. Research by others [3] has shown that a system of nonlinear differential equations can successfully be used to describe the hysteresis behavior of the MR damper. The focus of this paper is to develop an alternative method for modeling a damper in the form of centre average fuzzy interference system, where back propagation learning rules are used to adjust the weight of network. The inputs for the model are used from the experimental data. The resulting fuzzy interference system is satisfactorily represents the behavior of the MR fluid damper with reduced computational requirements. Use of the neuro-fuzzy model increases the feasibility of real time simulation.
Resumo:
Performance / presentation given at Freeplay 2010, Melbourne, Victoria as an invited guest for a session entitled "Beyond the controller" This performance intended to review the follies of tangible interface design for games since the appearance of games specific control peripherals in the 1980s. In this work I examine: Technology as prosthesis – designed artefacts that enable interaction in a virtual world; Technology as the dream of virtuality – mind-ware. IN each instance the controller DICTATES the form of interaction
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.
Resumo:
This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.
Resumo:
Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.