936 resultados para funzione di massa, galassie, star-formig, quiescenti, modelli semi-analitici, Schechter, densità numerica, downsizing
Resumo:
L’attività della tesi riguarda le protesi mioelettriche, gli arti protesici maggiormente diffusi, le quali sono descrivibili come arti robotici in cui i segmenti artificiali sono attuati da giunti elettromeccanici alimentati da batterie ricaricabili ed attivati mediante segnali elettromiografici (segnali elettrici generati dalla contrazione dei muscoli). Tali protesi di arto superiore attualmente disponibili in commercio potrebbero essere inadeguate per una riabilitazione soddisfacente di alcuni pazienti con una amputazione di alto livello che richiedono una elevata funzionalità nella vita quotidiana. In questo contesto si inserisce l’attività di ricerca del Centro Protesi INAIL di Budrio di Vigorso, Bologna, e dell’Università di Bologna i quali stanno sviluppando nuovi arti protesici con il progetto a lungo termine di rendere disponibili svariate soluzioni di protesi di arto superiore in grado di soddisfare la maggior parte delle richieste degli amputati. Lo scopo di questa tesi è l’introduzione di un nuovo rotatore omerale attivo da integrare alla protesi di arto superiore disponibile presso i nostri laboratori. Per ottenere questo risultato è stata utilizzata una procedura di progettazione già consolidata in attività precedenti per lo sviluppo di una protesi di spalla a due gradi di libertà. Differenti modelli cinematici sono stati studiati tramite analisi cinematiche per determinare l’incremento delle prestazioni a seguito dell’introduzione del nuovo rotatore omerale attivo. Sono state inoltre condotte analisi cinetostatiche per definire le specifiche tecniche di riferimento (in termini di carichi agenti sul rotatore omerale) e per guidare il dimensionamento della catena di trasmissione di potenza del nuovo dispositivo protesico. Ulteriori specifiche tecniche sono state considerate per garantire l’irreversibilità spontanea del moto sotto carichi esterni (quando i giunti attivi della protesi non sono alimentati), per salvaguardare l’incolumità del paziente in caso di caduta, per misurare la posizione angolare del rotatore omerale (in modo da implementare strategie di controllo in retroazione) e per limitare i consumi e la rumorosità del dispositivo. Uno studio di fattibilità ha permesso la selezione della architettura ottimale della catena di trasmissione di potenza per il nuovo rotatore omerale. I criteri di scelta sono stati principalmente la limitazione del peso e dell’ingombro del nuovo dispositivo protesico. Si è quindi proceduto con la progettazione di dettaglio alla quale è seguita la costruzione di un prototipo del nuovo rotatore omerale presso i nostri laboratori. La tesi tratta infine una attività preliminare di sperimentazione che ha permesso di fare considerazioni sulle prestazioni del prototipo ed osservazioni importanti per le successive attività di revisione ed ottimizzazione del progetto del rotatore omerale.
Resumo:
implementazione e dimostrazione di semantiche per il nuovo linguaggio di modellazione concorrente ¨Multi-CCS¨
Resumo:
Con il termine neurofibromatosi (NF) si comprendono almeno sette malattie genetiche diverse ma accomunate dalla presenza di neurofibromi localizzati nei distretti cutaneo, orale, viscerale e scheletrico. Dal momento che la NF1 (malattia di Von Recklinghausen), una delle più diffuse malattie genetiche, può avere manifestazioni a livello orale, gli odontoiatri devono essere a conoscenza delle sue caratteristiche patognomoniche. Obiettivo della tesi è la ricerca di manifestazioni della NF1 a livello dell’apparato stomatognatico. Materiali e metodi 98 pazienti affetti da NF1 (44 maschi, 54 femmine dai 2 ai 24 anni; età media di 8,6 anni) sono stati indagati clinicamente e radiograficamente; clinicamente si sono valutati: prevalenza della patologia cariosa (dmft; DMFt), indice parodontale di comunità (CPI), anomalie dentali, presenza di lesioni a livello dei tessuti molli intraorali, presenza di patologie ortopedico-ortodontiche; presenza di abitudini viziate; sulle ortopantomografie eseguite su 49 pazienti (23 maschi, 26 femmine dai 6 ai 19 anni; età media di 10 anni) si sono valutate manifestazioni ossee e dentali caratteristiche della sindrome. Risultati Dallo studio è emerso che i pazienti affetti da NF1 presentano: dmft/DMFt e CPI elevati (dmft = 2,1; DMFt = 1,6; tessuti gengivali con sanguinamento nel 50% dei casi; eruzione dentale anticipata nel 10%; eruzione dentale ritardata nel 10%; taurodontismo nel 16%; patologie ortopedico-ortodontiche nel 40% (tendenza alla terza classe scheletrica, palato ogivale, morso aperto anteriore, morso coperto, morso crociato posteriore monolaterale, morso crociato posteriore bilaterale, linea mediana deviata, incompetenza labiale); abitudini viziate nel 27% (respirazione orali e deglutizione infantile); lesione neurofibromatosa della gengiva in un caso; per quanto riguarda la valutazione delle ortopantomografie, manifestazioni ossee caratteristiche della sindrome sono state evidenziate nel 28% dei casi (incisura coronoide deformata, processo coronoide ipoplasico o pseudoallungato, condilo ipoplasico, condilo iperplasico, canale mandibolare allargato, forame mandibolare allargato e alto, bordo inferiore della mandibola deformato). La necessità di programmi ed interventi di screening e follow-up periodici (visite odontoiatriche a partire dal momento della diagnosi a cadenza semestrale, esami radiografici a partire dai 6 anni di età a cadenza stabilita individualmente in funzione del livello di rischio) è supportata dall’elevato rischio di patologie cariosa e parodontale e dalla presenza di manifestazioni a livello dei tessuti duri e molli del distretto cefalico a documentato rischio di trasformazione maligna. Parole chiave: neurofibromatosi, patologie orali, distretto cefalico.
Resumo:
La ricerca ha avuto come obiettivo l’analisi delle residenze lungo la rue Mallet-Stevens, a Parigi, realizzate da Robert Mallet-Stevens negli anni 1925-1930. Si tratta di un intervento pensato unitariamente, i cui dispositivi spaziali sono rivelatori tanto del concetto spazio-forma, quanto del processo d’ideazione dello stesso nell’ambito dei paradigmi gestaltici e compositivi della modernità. All’epoca la necessità di espressione e affermazione di un simile concetto si tradusse nell’interpretazione spaziale dalla scala dell’abitazione alla scala della città. Le residenze, realizzate nella zona di Auteuil (16 arrondissement), occupano l’area di una nuova lottizzazione, da cui il successivo nome dell’intervento: case su rue Mallet-Stevens. Il programma comprendeva cinque abitazioni, commissionate da artisti e ricchi borghesi, una piccola maison per il guardiano del confinante parco, e un progetto, mai realizzato che nella prima versione comprendeva due interventi: un hôtel particulier e un edificio per appartamenti. La rue Mallet-Stevens si costituì come frammento di città possibile, ove si manifestava un’idea di urbanità chiaramente ispirata al modello della città giardino e ai valori del vivere moderno. I volumi “stereometrici” sono la cifra dell’idea di spazio che, a quel punto della sua attività, Mallet-Stevens aveva maturato sia come architetto, sia come scenografo. La metodologia di analisi critica dell’oggetto architettonico adottata in questa ricerca, si è servita di una lettura incrociata del testo (l’oggetto architettonico), del paratesto (ciò che l’autore ha scritto di sé e della propria opera) e dell’intertesto, in altre parole l’insieme di quelle relazioni che possono ricondurre sia ad altre opere dello stesso autore, sia ai modelli cui l’architetto ha fatto riferimento. Il ridisegno bidimensionale e tridimensionale degli edifici della rue Mallet-Stevens ha costituito lo strumento fondamentale di analisi per la comprensione dei temi architettonici. Le conclusioni cui la ricerca è giunta mostrano come la posizione culturale di Mallet-Stevens si è arricchita di molteplici influenze creative, sulla scia di una consapevole e costante strategia di contaminazione. Mallet-Stevens, osservando i linguaggi a lui contemporanei, si appropriò della componente morfologica del progetto, privilegiandola rispetto a quella sintattica, per poi giungere ad una personalissima sintesi delle stesse.
Resumo:
INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.
Resumo:
Il presente lavoro di tesi nasce dalla collaborazione tra l’Università di Bologna, Polo Scientifico Didattico di Ravenna, e l’Agenzia Regionale Prevenzione ed Ambiente dell’Emilia Romagna (ARPA EMR), sezione di Ravenna, inserendosi nell’ambito del progetto di Dottorato “Sviluppo di tecniche per la progettazione delle reti di monitoraggio della qualità dell’aria”. Lo scopo principale dello studio è quello di definire una metodologia di tipo Top-Down per disaggregare spazialmente sulla Provincia di Ravenna le emissioni in atmosfera stimate dall’inventario provinciale di ARPA EMR. La metodologia CORINAIR (COordination INformation AIR), sviluppata dalla Agenzia Europea per l’Ambiente, prefigura due possibili procedure di stima delle emissioni in atmosfera: Top-Down (parte dalla scala spaziale più ampia e discende a livelli inferiori) e Bottom-Up (parte invece dall’analisi della realtà produttiva locale per passare a quella relativa a livelli di aggregazione maggiori). La metodologia proposta, di tipo Top-Down, si avvale volutamente di variabili proxy facilmente reperibili a livello comunale, in modo che possa essere applicata anche ad altre realtà locali, meno ricche di dati statistici e ambientali di quanto non lo sia la regione Emilia Romagna in generale e la provincia di Ravenna in particolare. La finalità ultima dello studio è quella di fornire una metodologia per ottenere, attraverso dati resi disponibili da ogni amministrazione comunale, un quadro conoscitivo della situazione emissiva in atmosfera a livello locale a supporto della gestione della qualità dell’aria e dei relativi fattori di pressione. Da un punto di vista operativo, il lavoro di tesi è stato suddiviso in: una fase progettuale, con l’obiettivo di individuare i Macrosettori CORINAIR e gli inquinanti principali da tenere in considerazione nello studio, ed identificare le variabili proxy più opportune per la disaggregazione delle emissioni; una fase di raccolta dei dati ed infine, l’elaborazione dei dati con l’ausilio del software GIS ArcMap 9.3. La metodologia Top-Down è stata applicata in due fasi: con la prima si è effettuata la disaggregazione dal livello provinciale a quello comunale; con la seconda, le emissioni attribuite al comune di Ravenna sono state distribuite spazialmente su una griglia le cui celle hanno dimensione 100m x 100m in modo da ottenere una disaggregazione ad alta risoluzione. I risultati ottenuti dalla disaggregazione effettuata sono stati confrontati, là dove possibile, con dati ottenuti da un approccio Bottom-Up, allo scopo di validare la metodologia proposta. I confronti fra le stime effettuate con l’approccio Top-Down e quelle derivanti dall’approccio Bottom-Up hanno evidenziato risultati diversi per i differenti Macrosettori investigati. Per il macrosettore industriale, si sono evidenziate una serie di limitazioni dimostrando che l’utilizzo della proxy ‘superficie industriale’, così come applicata, non è adeguata né a livello qualitativo né quantitativo. Limitazioni significative, si osservano anche per il macrosettore ‘traffico veicolare’ per il quale è possibile effettuare una stima accurata delle emissioni totali ma poi la disaggregazione spaziale ad alta risoluzione appare insoddisfacente. Ottime risultano invece le performance della metodologia proposta per il macrosettore combustione non industriale, per il quale si osserva un buon accordo sia per i valori emissivi globali, sia per la loro distribuzione spaziale ad alta risoluzione. Relativamente agli altri settori e macrosettori analizzati (‘Altre sorgenti mobili’ e ‘Agricoltura’), non è stato possibile effettuare confronti con dati provenienti dall’approccio Bottom- Up. Nonostante ciò, dopo un’attenta ricerca bibliografica, si può affermare, che le proxy utilizzate sono fra quelle più impiegate in letteratura, ed il loro impiego ha permesso l’ottenimento di una distribuzione spaziale verosimile ed in linea con l’inventario provinciale ARPA EMR. In ultimo, le mappe di pressione ottenute con l’ausilio di ArcMap sono state analizzate qualitativamente per identificare, nel territorio del Comune di Ravenna, le zone dove insiste una maggiore pressione emissiva sul comparto atmosferico. E’ possibile concludere che il livello di dettaglio ottenuto appare sufficiente a rappresentare le zone più critiche del territorio anche se un ulteriore lavoro dovrà essere previsto per sviluppare meglio i macrosettori che hanno mostrato le maggiori criticità. Inoltre, si è riusciti a tracciare una metodologia sufficientemente flessibile per poterla applicare anche ad altre realtà locali, tenendo comunque sempre presente che, la scelta delle proxy, deve essere effettuata in funzione delle caratteristiche intrinseche del territorio.
Resumo:
L’obiettivo di questo lavoro è il calcolo del fattore di struttura R che può essere adottato in funzione delle caratteristiche della struttura: periodo naturale T, duttilità richiesta mu_r ed indice di smorzamento csi. Il modello adottato per rappresentare la struttura è l’oscillatore semplice elastico - perfettamente plastico. Operativamente, scelto un sisma registrato, si considera una struttura caratterizzata da un determinato periodo T e, a parità di livello di sicurezza (cioè a parità di duttilità richiesta), tramite un procedimento iterativo si procede al calcolo di R_5 relativo ad uno smorzamento pari al 5% e di R_csi relativo ad un generico smorzamento csi>5%; il confronto fra questi due valori è espresso dal parametro alpha_csi=R_csi/R_5. I risultati ottenuti dal calcolo vengono inseriti in un database. A seguire vengono implementate una serie di analisi (anche di tipo statistico) sui dati raccolti nel database per comprendere l’influenza delle varie caratteristiche della struttura sul valore del fattore di riduzione delle forze sismiche.
Resumo:
Down syndrome (DS) or Trisomy 21, occurring in 1/700 and 1/1000 livebirths, is the most common genetic disorder, characterized by a third copy of the human chromosome 21 (Hsa21). DS is associated with various defects, including congenital heart diseases, craniofacial abnormalities, immune system dysfunction, mental retardation (MR), learning and memory deficiency. The phenotypic features in DS are a direct consequence of overexpression of genes located within the triplicated region on Hsa21. In addition to developmental brain abnormalities and disabilities, people with DS by the age of 30-40 have a greatly increased risk of early-onset of Alzheimer’s disease (AD) and an apparent tendency toward premature aging. Many of the immunological anomalies in DS can be enclosed in the spectrum of multiple signs of early senescence. People with DS have an increased vulnerability to oxidative damage and many factors, including amyloid beta protein (Abeta), genotype ApoE4, oxidative stress, mutations in mitochondrial DNA (mtDNA), impairment of antioxidant enzymes, accelerated neuronal cell apoptosis, are related to neuronal degeneration and early aging in DS. SUBJECTS and METHODS: Since 2007 a population of 50 adolescents and adults with DS, 26 males and 24 females (sex-ratio: M/F = 1.08), has been evaluated for the presence of neurological features, biomarkers and genetic factors correlated with neuronal degeneration and premature aging. The control group was determined by the mother and the siblings of the patients. A neuropsychiatric evaluation was obtained from all patients. The levels of thyroid antibodies (antiTg and antiTPO) and of some biochemical markers of oxidative stress, including homocysteine (tHcy), uric acid, cobalamin, folate were measured. All patients, the mother and the siblings were genotyped for ApoE gene. RESULTS: 40% of patients, with a mild prevalence of females aged between 19 and 30 years, showed increased levels of antiTg and antiTPO. The levels of tHcy were normal in 52% patients and mildly increased in 40%; hyperomocysteinemia was associated with normal levels of thyroid antibodies in 75% of patients (p<0.005). The levels of uric acid were elevated in 26%. Our study showed a prevalence of severe MR in patients aged between 1-18 years and over 30 years. Only 3 patients, 2 females and one male, over 30 years of age, showed dementia. According to the literature, the rate of Down left-handers was high (25%) compared to the rest of population and the laterality was associated with increased levels of thyroid antibodies (70%). 21.5% of patients were ApoE4 positive (ApoE4+) with a mean/severe MR. CONCLUSIONS: Until now no biochemical evidence of oxidative damage and no deficiency or alteration of antioxidant function in our patients with DS were found. mtDNA sequencing could show some mutations age-related and associated with oxidative damage and neurocognitive decline in the early aging of DS. The final aim is found predictive markers of early-onset dementia and a target strategy for the prevention and the treatment of diseases caused by oxidative stress. REFERENCES: 1) Rachidi M, Lopes C: “Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways.” - Eur J Paediatr Neurol. May;12(3):168-82 (2008). 2) Lott IT, Head E: “Down syndrome and Alzheimer's disease: a link between development and aging.” - Ment Retard Dev Disabil Res Rev, 7(3):172-8 (2001). 3) Lee HC, Wei YH: “Oxidative Stress, Mitochondrial DNA Mutation, and Apoptosis in Aging.” - Exp Biol Med (Maywood), May;232(5):592-606 (2007).
Resumo:
I poriferi rappresentano un importante campo di ricerca anche in ambito applicativo in quanto potenzialmente utili come fonte di metaboliti secondari da impiegarsi in ambito clinico (antitumorali, antibiotici, antivirali, ecc.) e industriale (antifouling). I processi di biosilicificazione interessano invece per aspetti legati alle biotecnologie marine. Questo Phylum ha un importante ruolo strutturale e funzionale nell’ecologia dei popolamenti bentonici, in quanto può essere dominante in numerosi habitat e svolgere un ruolo ecologico fondamentale nelle dinamiche degli ecosistemi marini. Per questo, la variazione spaziale e temporale della loro abbondanza può avere effetti considerevoli su altri membri della comunità. Lo studio delle dinamiche di popolazione e del ciclo riproduttivo dei poriferi potrebbe permettere di valutare come i cambiamenti climatici ne influenzino la crescita e la riproduzione e potrebbe quindi fornire una base per lo sviluppo di corrette tecniche di gestione ambientale. La spugna Axinella polypoides è inserita all’interno delle liste di protezione della Convenzione di Berna e di Barcellona, dove sono elencate le specie da proteggere perché minacciate o in pericolo di estinzione. Questa specie, avendo una morfologia eretta, è fortemente minacciata soprattutto da attività antropiche quali pesca e ancoraggi, ma nonostante questo la letteratura relativa ad essa è scarsa, La sua importanza è legata soprattutto al recente utilizzo come modello per numerosi esperimenti. A. polypoides rappresenta, infatti, il più basso livello nella scala evolutiva in cui sono stati rinvenuti meccanismi biochimici cellulari di reazione all’aumento di temperatura (incremento dell’attività ADP-ribosil ciclasica, sintesi di ossido nitrico) tipici degli organismi superiori. Lo scopo di questa tesi è di aumentare le conoscenze sull’ecologia e sulla biologia di questo porifero, al fine di consentire una migliore predisposizione di eventuali piani di tutela. Dallo studio delle colonie effettuato presso l’Isola Gallinara (SV), emerge una dinamica di crescita lenta ed un ciclo riproduttivo estivo, coerentemente con quanto osservato per altre specie mediterranee del genere Axinella. Le analisi istologiche effettuate hanno mostrato variabilità temporale nella densità e nella dimensione di particolari cellule sferulose, che si ipotizza siano collegate a fenomeni di proliferazione cellulare e rigenerazione in seguito a danni. È stata individuata inoltre la presenza di una particolare tipologia cellulare dendritica la cui funzione si ritiene abbia affinità con le funzioni sensoriali di Phyla superiori. Queste osservazioni, e l’evidente vulnerabilità della specie agli impatti antropici, hanno evidenziato la necessità di sviluppare adeguati piani di monitoraggio e di conservazione.
Resumo:
L’integrazione multisensoriale è la capacità del sistema nervoso di utilizzare molteplici sorgenti sensoriali. Una tra le più studiate forme di integrazione è quella tra informazioni visive ed acustiche. La capacità di localizzare uno stimolo acustico nello spazio è un processo meno accurato ed affidabile della localizzazione visiva, di conseguenza, un segnale visivo è spesso in grado di “catturare” (ventriloquismo) o di incrementare (enhancement multisensoriale) la performance di localizzazione acustica. Numerose evidenze sperimentali hanno contribuito ad individuare i processi neurali e le aree cerebrali alla base dei fenomeni integrativi; in particolare, un importante contributo viene dallo studio su soggetti con lesioni cerebrali. Tuttavia molti aspetti sui possibili meccanismi coinvolti restano ancora da chiarire. Obiettivo di questa tesi è stato lo sviluppo di un modello matematico di rete neurale per fare luce sui meccanismi alla base dell’interazione visuo-acustica e dei suoi fenomeni di plasticità. In particolare, il modello sviluppato è in grado di riprodurre condizioni che si verificano in-vivo, replicando i fenomeni di ventriloquismo ed enhancement in diversi stati fisiopatologici e interpretandoli in termini di risposte neurali e reciproche interazione tra i neuroni. Oltre ad essere utile a migliorare la comprensione dei meccanismi e dei circuiti neurali coinvolti nell’integrazione multisensoriale, il modello può anche essere utile per simulare scenari nuovi, con la possibilità di effettuare predizioni da testare in successivi esperimenti.
Resumo:
I moderni sistemi embedded sono equipaggiati con risorse hardware che consentono l’esecuzione di applicazioni molto complesse come il decoding audio e video. La progettazione di simili sistemi deve soddisfare due esigenze opposte. Da un lato è necessario fornire un elevato potenziale computazionale, dall’altro bisogna rispettare dei vincoli stringenti riguardo il consumo di energia. Uno dei trend più diffusi per rispondere a queste esigenze opposte è quello di integrare su uno stesso chip un numero elevato di processori caratterizzati da un design semplificato e da bassi consumi. Tuttavia, per sfruttare effettivamente il potenziale computazionale offerto da una batteria di processoriè necessario rivisitare pesantemente le metodologie di sviluppo delle applicazioni. Con l’avvento dei sistemi multi-processore su singolo chip (MPSoC) il parallel programming si è diffuso largamente anche in ambito embedded. Tuttavia, i progressi nel campo della programmazione parallela non hanno mantenuto il passo con la capacità di integrare hardware parallelo su un singolo chip. Oltre all’introduzione di multipli processori, la necessità di ridurre i consumi degli MPSoC comporta altre soluzioni architetturali che hanno l’effetto diretto di complicare lo sviluppo delle applicazioni. Il design del sottosistema di memoria, in particolare, è un problema critico. Integrare sul chip dei banchi di memoria consente dei tempi d’accesso molto brevi e dei consumi molto contenuti. Sfortunatamente, la quantità di memoria on-chip che può essere integrata in un MPSoC è molto limitata. Per questo motivo è necessario aggiungere dei banchi di memoria off-chip, che hanno una capacità molto maggiore, come maggiori sono i consumi e i tempi d’accesso. La maggior parte degli MPSoC attualmente in commercio destina una parte del budget di area all’implementazione di memorie cache e/o scratchpad. Le scratchpad (SPM) sono spesso preferite alle cache nei sistemi MPSoC embedded, per motivi di maggiore predicibilità, minore occupazione d’area e – soprattutto – minori consumi. Per contro, mentre l’uso delle cache è completamente trasparente al programmatore, le SPM devono essere esplicitamente gestite dall’applicazione. Esporre l’organizzazione della gerarchia di memoria ll’applicazione consente di sfruttarne in maniera efficiente i vantaggi (ridotti tempi d’accesso e consumi). Per contro, per ottenere questi benefici è necessario scrivere le applicazioni in maniera tale che i dati vengano partizionati e allocati sulle varie memorie in maniera opportuna. L’onere di questo compito complesso ricade ovviamente sul programmatore. Questo scenario descrive bene l’esigenza di modelli di programmazione e strumenti di supporto che semplifichino lo sviluppo di applicazioni parallele. In questa tesi viene presentato un framework per lo sviluppo di software per MPSoC embedded basato su OpenMP. OpenMP è uno standard di fatto per la programmazione di multiprocessori con memoria shared, caratterizzato da un semplice approccio alla parallelizzazione tramite annotazioni (direttive per il compilatore). La sua interfaccia di programmazione consente di esprimere in maniera naturale e molto efficiente il parallelismo a livello di loop, molto diffuso tra le applicazioni embedded di tipo signal processing e multimedia. OpenMP costituisce un ottimo punto di partenza per la definizione di un modello di programmazione per MPSoC, soprattutto per la sua semplicità d’uso. D’altra parte, per sfruttare in maniera efficiente il potenziale computazionale di un MPSoC è necessario rivisitare profondamente l’implementazione del supporto OpenMP sia nel compilatore che nell’ambiente di supporto a runtime. Tutti i costrutti per gestire il parallelismo, la suddivisione del lavoro e la sincronizzazione inter-processore comportano un costo in termini di overhead che deve essere minimizzato per non comprometterre i vantaggi della parallelizzazione. Questo può essere ottenuto soltanto tramite una accurata analisi delle caratteristiche hardware e l’individuazione dei potenziali colli di bottiglia nell’architettura. Una implementazione del task management, della sincronizzazione a barriera e della condivisione dei dati che sfrutti efficientemente le risorse hardware consente di ottenere elevate performance e scalabilità. La condivisione dei dati, nel modello OpenMP, merita particolare attenzione. In un modello a memoria condivisa le strutture dati (array, matrici) accedute dal programma sono fisicamente allocate su una unica risorsa di memoria raggiungibile da tutti i processori. Al crescere del numero di processori in un sistema, l’accesso concorrente ad una singola risorsa di memoria costituisce un evidente collo di bottiglia. Per alleviare la pressione sulle memorie e sul sistema di connessione vengono da noi studiate e proposte delle tecniche di partizionamento delle strutture dati. Queste tecniche richiedono che una singola entità di tipo array venga trattata nel programma come l’insieme di tanti sotto-array, ciascuno dei quali può essere fisicamente allocato su una risorsa di memoria differente. Dal punto di vista del programma, indirizzare un array partizionato richiede che ad ogni accesso vengano eseguite delle istruzioni per ri-calcolare l’indirizzo fisico di destinazione. Questo è chiaramente un compito lungo, complesso e soggetto ad errori. Per questo motivo, le nostre tecniche di partizionamento sono state integrate nella l’interfaccia di programmazione di OpenMP, che è stata significativamente estesa. Specificamente, delle nuove direttive e clausole consentono al programmatore di annotare i dati di tipo array che si vuole partizionare e allocare in maniera distribuita sulla gerarchia di memoria. Sono stati inoltre sviluppati degli strumenti di supporto che consentono di raccogliere informazioni di profiling sul pattern di accesso agli array. Queste informazioni vengono sfruttate dal nostro compilatore per allocare le partizioni sulle varie risorse di memoria rispettando una relazione di affinità tra il task e i dati. Più precisamente, i passi di allocazione nel nostro compilatore assegnano una determinata partizione alla memoria scratchpad locale al processore che ospita il task che effettua il numero maggiore di accessi alla stessa.
Resumo:
La Piccola e Media Impresa (PMI) ha costituito in Italia e all’estero un fenomeno che ha permesso un’importante crescita economica dal secondo dopoguerra in poi e tutt’oggi rappresenta quasi il 95% delle imprese italiane. L’ambiente di riferimento odierno è molto dinamico ed incerto e la competitività è più difficile da raggiungere a causa delle nuove e crescenti economie emergenti. A rendere l’ambiente competitivo più complesso si è aggiunta la crisi internazionale nata intorno al 2006 negli Stati Uniti e arrivata in Europa un paio di anni dopo, portando l’economia globale in un periodo di recessione. Tutto ciò ha reso necessario ripensare all’approccio delle imprese verso i mercati, soprattutto le PMI, applicando nuovi processi d’innovazione. Questi non dovranno limitarsi alla sola ricerca di nuovi prodotti ma cambiare anche l’impostazione manageriale in modo da avviare innovazioni di mercato. E qui che il tema dell’internazionalizzazione assume ancor più rilevanza diventando, in un periodo di crisi economica, un’importante opportunità di crescita per le PMI. Dagli anni ’70 in poi le imprese multinazionali (MNCs) erano quelle che operavano in più Paesi e Continenti estendendo il proprio business in tutto il mondo. Per le piccole e medie imprese era difficile immaginare nuovi business al di fuori dei confini territoriali per le difficoltà che un processo di internazionalizzazione richiedeva. Oggi, l’internazionalizzazione, è vista come una chance di sopravvivenza ed è spinta da diversi fattori. Questi non si limitano più alla sola ricerca di maggiori ricavi ed abbattimento dei costi ma anche “sourcing” di Know-how e tecnologie, diversificazione del rischio, partecipazione a segmenti di mercato diventati globali e sfruttamento delle opportunità offerte dai governi esteri. Con il seguente lavoro di tesi si vogliono studiare le modalità in cui si svolgono processi di internazionalizzazione e l’origine dell’impulso che induce le piccole e medie imprese ad intraprenderli. A questo proposito si sono fatte ricerche su database e riviste scientifiche volte alla raccolta e analisi dei principali articoli che la letteratura offre su i temi appena citati. Individuate le principali teorie e modelli queste sono confrontate con un caso empirico cercando i punti di contatto tra ciò che è emerso dall’analisi teorica e quella empirica. A tal proposito viene mostrato il caso dell’azienda Sinergia Sistemi S.p.A. in cui ho collaborato e avuto modo di compiere ricerche per un periodo di sei mesi. Il lavoro di tesi è pertanto strutturato in quattro capitoli. Nel primo capitolo è esposta l’analisi della letteratura scientifica andando ad individuare le principali teorie sui processi di internazionalizzazione. Attraverso quest’analisi sarà possibile avere un quadro di riferimento sui possibili processi di internazionalizzazione che le imprese possono intraprendere. Nel secondo capitolo si vuole comprendere come le imprese arrivino alla decisione di internazionalizzarsi e quali fattori, interni ed esterni all’impresa, influenzino tale scelta. Nel terzo capitolo viene esaminato il caso di Sinergia Sistemi S.p.A., società operante nel campo delle energie rinnovabili ed efficienza energetica. Dopo una prima parte che introduce l’azienda ed il mercato delle rinnovabili, sarà analizzata la situazione attuale dell’azienda nel suo processo di internazionalizzazione e la strategia delineata. Nell’ultimo capitolo si effettuerà un confronto tra ciò che la letteratura scientifica propone sui processi di internazionalizzazione ed il caso specifico esaminato. Si cercherà di trovare dei riscontri tra le varie teorie offerte dalla letteratura con la strategia seguita da Sinergia Sistemi. L’obiettivo generale di questo lavoro di tesi è confrontare teorie e modelli di internazionalizzazione con un caso empirico per comprendere l’esistenza di un riscontro con le aziende appartenenti ad un particolare settore, quello delle energie rinnovabili. Vedremo come le peculiarità di questo settore portino le imprese a dare molta rilevanza ai network che si vengono a formare nei vari Paesi più che alla ricerca di innovazioni di prodotto, che resta sempre fondamentale per la crescita. L’appartenenza ai giusti network può semplificare notevolmente il processo di internazionalizzazione, se non diventare perfino indispensabile.