910 resultados para fractional-order behavior
Resumo:
Corneal-height data are typically measured with videokeratoscopes and modeled using a set of orthogonal Zernike polynomials. We address the estimation of the number of Zernike polynomials, which is formalized as a model-order selection problem in linear regression. Classical information-theoretic criteria tend to overestimate the corneal surface due to the weakness of their penalty functions, while bootstrap-based techniques tend to underestimate the surface or require extensive processing. In this paper, we propose to use the efficient detection criterion (EDC), which has the same general form of information-theoretic-based criteria, as an alternative to estimating the optimal number of Zernike polynomials. We first show, via simulations, that the EDC outperforms a large number of information-theoretic criteria and resampling-based techniques. We then illustrate that using the EDC for real corneas results in models that are in closer agreement with clinical expectations and provides means for distinguishing normal corneal surfaces from astigmatic and keratoconic surfaces.
Resumo:
Recently, the numerical modelling and simulation for fractional partial differential equations (FPDE), which have been found with widely applications in modern engineering and sciences, are attracting increased attentions. The current dominant numerical method for modelling of FPDE is the explicit Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of time fractional diffusion equations. The discrete system of equations is obtained by using the RBF meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modelling and simulation for FPDE.
Resumo:
Alexander’s Ecological Dominance and Social Competition (EDSC) model currently provides the most comprehensive overview of human traits in the development of a theory of human evolution and sociality (Alexander, 1990; Finn, Geary & Ward, 2005; Irons, 2005). His model provides a basis for explaining the evolution of human socio-cognitive abilities. Our paper examines the extension of Alexander’s model to incorporate the human trait of information behavior in synergy with ecological dominance and social competition as a human socio-cognitive competence. This paper discusses the various interdisciplinary perspectives exploring how evolution has shaped information behavior and why information behavior is emerging as an important human socio-cognitive competence. This paper outlines these issues, including the extension of Spink and Currier’s (2006a,b) evolution of information behavior model towards a more integrated understanding of how information behaviors have evolved (Spink & Cole, 2006).
Resumo:
Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.
Resumo:
When performances are evaluated they are very often presented in a sequential order. Previous research suggests that the sequential presentation of alternatives may induce systematic biases in the way performances are evaluated. Such a phenomenon has been scarcely studied in economics. Using a large dataset of performance evaluation in the Idol series (N=1522), this paper presents new evidence about the systematic biases in sequential evaluation of performances and the psychological phenomena at the origin of these biases.
Resumo:
For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.
Resumo:
This paper studies interfacial debonding behavior of composite beams which include piezoelectric materials, adhesive and host beam. The focus is put on crack initiation and growth of the piezoelectric adhesive interface. Closed-form solutions of interface stresses and energy release rates are obtained for adhesive layer in the piezoelectric composite beams. Finite element analyses have been carried out to study the initiation and growth of interfaces crack for piezoelectric beams with interface element by ANSYS, in which the interface element of FE model is based on the cohesive zone models to characterize the fracture behavior of the interfacial debonding. The results have been compared with analystical solution, and the influence of different geometry and material parameters on the interfacial behavior of piezoelectric composite beams have been discussed.
Resumo:
Introduction: Emergency prehospital medical care providers are frontline health workers during emergencies. However, little is known about their attitudes, perceptions, and likely behaviors during emergency conditions. Understanding these attitudes and behaviors is crucial to mitigating the psychological and operational effects of biohazard events such as pandemic influenza, and will support the business continuity of essential prehospital services. ----- ----- Problem: This study was designed to investigate the association between knowledge and attitudes regarding avian influenza on likely behavioral responses of Australian emergency prehospital medical care providers in pandemic conditions. ----- ----- Methods: Using a reply-paid postal questionnaire, the knowledge and attitudes of a national, stratified, random sample of the Australian emergency prehospital medical care workforce in relation to pandemic influenza were investigated. In addition to knowledge and attitudes, there were five measures of anticipated behavior during pandemic conditions: (1) preparedness to wear personal protective equipment (PPE); (2) preparedness to change role; (3) willingness to work; and likely refusal to work with colleagues who were exposed to (4) known and (5) suspected influenza. Multiple logistic regression models were constructed to determine the independent predictors of each of the anticipated behaviors, while controlling for other relevant variables. ----- ----- Results: Almost half (43%) of the 725 emergency prehospital medical care personnel who responded to the survey indicated that they would be unwilling to work during pandemic conditions; one-quarter indicated that they would not be prepared to work in PPE; and one-third would refuse to work with a colleague exposed to a known case of pandemic human influenza. Willingness to work during a pandemic (OR = 1.41; 95% CI = 1.0–1.9), and willingness to change roles (OR = 1.44; 95% CI = 1.04–2.0) significantly increased with adequate knowledge about infectious agents generally. Generally, refusal to work with exposed (OR = 0.48; 95% CI = 0.3–0.7) or potentially exposed (OR = 0.43; 95% CI = 0.3–0.6) colleagues significantly decreased with adequate knowledge about infectious agents. Confidence in the employer’s capacity to respond appropriately to a pandemic significantly increased employee willingness to work (OR = 2.83; 95% CI = 1.9–4.1); willingness to change roles during a pandemic (OR = 1.52; 95% CI = 1.1–2.1); preparedness to wear PPE (OR = 1.68; 95% CI = 1.1–2.5); and significantly decreased the likelihood of refusing to work with colleagues exposed to (suspected) influenza (OR = 0.59; 95% CI = 0.4–0.9). ----- ----- Conclusions:These findings indicate that education and training alone will not adequately prepare the emergency prehospital medical workforce for a pandemic. It is crucial to address the concerns of ambulance personnel and the perceived concerns of their relationship with partners in order to maintain an effective prehospital emergency medical care service during pandemic conditions.
Resumo:
BACKGROUND: Grafting of autologous hyaline cartilage and bone for articular cartilage repair is a well-accepted technique. Although encouraging midterm clinical results have been reported, no information on the mechanical competence of the transplanted joint surface is available. HYPOTHESIS: The mechanical competence of osteochondral autografts is maintained after transplantation. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral defects were filled with autografts (7.45 mm in diameter) in one femoral condyle in 12 mature sheep. The ipsilateral femoral condyle served as the donor site, and the resulting defect (8.3 mm in diameter) was left empty. The repair response was examined after 3 and 6 months with mechanical and histologic assessment and histomorphometric techniques. RESULTS: Good surface congruity and plug placement was achieved. The Young modulus of the grafted cartilage significantly dropped to 57.5% of healthy tissue after 3 months (P < .05) but then recovered to 82.2% after 6 months. The aggregate and dynamic moduli behaved similarly. The graft edges showed fibrillation and, in some cases (4 of 6), hypercellularity and chondrocyte clustering. Subchondral bone sclerosis was observed in 8 of 12 cases, and the amount of mineralized bone in the graft area increased from 40% to 61%. CONCLUSIONS: The mechanical quality of transplanted cartilage varies considerably over a short period of time, potentially reflecting both degenerative and regenerative processes, while histologically signs of both cartilage and bone degeneration occur. CLINICAL RELEVANCE: Both the mechanically degenerative and restorative processes illustrate the complex progression of regeneration after osteochondral transplantation. The histologic evidence raises doubts as to the long-term durability of the osteochondral repair.
Resumo:
Hydrogels provide a 3-dimensional network for embedded cells and offer promise for cartilage tissue engineering applications. Nature-derived hydrogels, including alginate, have been shown to enhance the chondrocyte phenotype but are variable and not entirely controllable. Synthetic hydrogels, including polyethylene glycol (PEG)-based matrices, have the advantage of repeatability and modularity; mechanical stiffness, cell adhesion, and degradability can be altered independently. In this study, we compared the long-term in vitro effects of different hydrogels (alginate and Factor XIIIa-cross-linked MMP-sensitive PEG at two stiffness levels) on the behavior of expanded human chondrocytes and the development of construct properties. Monolayer-expanded human chondrocytes remained viable throughout culture, but morphology varied greatly in different hydrogels. Chondrocytes were characteristically round in alginate but mostly spread in PEG gels at both concentrations. Chondrogenic gene (COL2A1, aggrecan) expression increased in all hydrogels, but alginate constructs had much higher expression levels of these genes (up to 90-fold for COL2A1), as well as proteoglycan 4, a functional marker of the superficial zone. Also, chondrocytes expressed COL1A1 and COL10A1, indicative of de-differentiation and hypertrophy. After 12 weeks, constructs with lower polymer content were stiffer than similar constructs with higher polymer content, with the highest compressive modulus measured in 2.5% PEG gels. Different materials and polymer concentrations have markedly different potency to affect chondrocyte behavior. While synthetic hydrogels offer many advantages over natural materials such as alginate, they must be further optimized to elicit desired chondrocyte responses for use as cartilage models and for development of functional tissue-engineered articular cartilage.
Resumo:
As online social spaces continue to grow in importance, the complex relationship between users and the private providers of the platforms continues to raise increasingly difficult questions about legitimacy in online governance. This article examines two issues that go to the core of egitimate governance in online communities: how are rules enforced and punishments imposed, and how should the law support legitimate governance and protect participants from the illegitimate exercise of power? Because the rules of online communities are generally ultimately backed by contractual terms of service, the imposition of punishment for the breach of internal rules exists in a difficult conceptual gap between criminal law and the predominantly compensatory remedies of contractual doctrine. When theorists have addressed the need for the rules of virtual communities to be enforced, a dichotomy has generally emerged between the appropriate role of criminal law for 'real' crimes, and the private, internal resolution of 'virtual' or 'fantasy' crimes. In this structure, the punitive effect of internal measures is downplayed and the harm that can be caused to participants by internal sanctions is systemically undervalued.
Resumo:
Adolescents engage in many risk-taking behaviors that have the potential to lead to injury. The school environment has a significant role in shaping adolescent behavior, and this study aimed to provide additional information about the benefits associated with connectedness to school. Early adolescents aged 13 to 15 years (N = 509, 49% boys) were surveyed about school connectedness, engagement in transport and violence risk-taking, and injury experiences. Significant relations were found between school connectedness and reduced engagement in both transport and violence risk-taking, as well as fewer associated injuries. This study has implications for the area of risk-taking and injury prevention, as it suggests the potential for reducing adolescents' injury through school based interventions targeting school connectedness.
Resumo:
Multilevel converters are used in high power and high voltage applications due to their attractive benefits in generating high quality output voltage. Increasing the number of voltage levels can lead to a reduction in lower order harmonics. Various modulation and control techniques are introduced for multilevel converters like Space Vector Modulation (SVM), Sinusoidal Pulse Width Modulation (SPWM) and Harmonic Elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this paper a new modulation technique based on harmonic elimination method is proposed for those multilevel converters that have unequal DC link voltages. This new technique has better effect on output voltage quality and less Total Harmonic Distortion (THD) than other modulation techniques. In order to verify the proposed modulation technique, MATLAB simulations are carried out for a single-phase diode-clamped inverter.
Resumo:
A series of kaolinite-potassium acetate intercalation composite was prepared. The thermal behavior and decomposition of these composites were investigated by simultaneous differential scanning calorimetry-thermogravimetric analysis (DSC-TGA), X-ray diffraction (XRD) and Fourier-transformation infrared (FT-IR). The XRD pattern at room temperature indicated that intercalation of potassium acetate into kaolinite causes an increase of the basal spacing from 0.718 to 1.428nm. The peak intensity of the expanded phase of the composite decreased with heating above 300°C, and the basal spacing reduced to 1.19nm at 350°C and 0.718nm at 400°C. These were supported by DSC-TGA and FT-IR measurements, where the endothermic reactions are observed between 300 and 600°C. These reactions can be divided into two stages: 1) Removal of the intercalated molecules between 300-400°C. 2) Dehydroxylation of kaolinite between 400-600°C. Significant changes were observed in the infrared bands assigned to outer surface hydroxyl, inner surface hydroxyl, inner hydroxyl and hydrogen bands.